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S1: Time of day of mobile monitoring 

 



 

 

Figure S1: Percentage of measurements made before and after the curfew for different hours of 

the day 

S2 Methods 

S2.1 Mobile Monitoring Platform 

In order to evaluate if self-emissions from the motorbikes affected the measurements, we 

evaluated the correlation between PM2.5 concentrations and the calculated velocity (distance 

between measurements/time): -0.008,  as well as with calculated acceleration of the vehicles 

(velocity between measurements/time) (0.004). The low correlations likely indicates that the  

self-emissions did not significantly affect our results. Other than self-emissions, there are other 

factors that can affect the performance of low-cost sensors in a mobile setting, such as wind 

speed, vibrations etc. Limited research has evaluated how these parameters impact the 

measurements from a specific low-cost sensor: the PurpleAir finds that the fidelity of the 

measurements decreases with increasing air flow velocities (Mui et al., 2021). There is a need 

to extend this important line of research to other low-cost sensors. 

S2.2 SPS 30 

The SPS 30 uses a proprietary algorithm to estimate the number concentration of particles in 

size bins ranging from 0.3-10 μm diameter, based on measurements of the amount of red laser 

https://www.zotero.org/google-docs/?hmrRKj


light scattered by the particles. A fan generates the sample flow. As the sensor is relatively new 

(introduced into the market in late 2018), no other field tests as of August 2020 have been 

published using this sensor as far as the authors are aware, though open-seneca is currently 

testing this sensor in other cities in Europe, South America and Asia. 

 Laboratory tests conducted by the South Coast Air Quality Management District in California 

USA also found low cross variability between sensors in their tests 

(http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/sensirion-sps30-evaluation-

kit---field-evaluation.pdf, Last accessed Aug 1, 2020). These tests also demonstrated that the 

PM1 and PM2.5 measurements exhibited good agreement with that of a reference instrument, but 

the PM10 values did not, which is consistent with recent research that found the sensor was 

most sensitive to particles between 0.3 and 1.3 μm. Therefore, we restrict our focus to PM2.5 in 

this study. As we are interested in spatial patterns of PM2.5, our experiment allows us to 

compare the signal from our devices over space. 

S2.3 Background Correction 

We assessed the background aerosol contribution using two different methods. The first method 

assigns the lowest 10th percentile of PM2.5 concentrations for a given sampling hour as the fixed 

background value for that period.  

 

The second method uses a time-series, spline-of-minimums approach to estimate the background 

PM2.5. It involves (a) applying a rolling 30-second mean to smooth the measurements, (b) dividing 

the time series into discrete 10-minute segments and locating the minimum concentration in each 

segment, and (c) fitting a smooth, thin-plate regression spline through the minimum 

concentrations. We include all observations made from the eight Sensirion SPS 30 sensors for a 

given day in this methodology, consistent with our assumption that the background is temporally 

varying but spatially uniform.  

 

We compared each of the two proposed methods to choose a background pollution value and 

found that they produced similar background-corrected PM2.5 values. The median differences in 

the background-corrected PM2.5c values using the different methods was ~ 4.4% (mean difference 

= -41%). The median differences between the PM2.5c values and the raw PM2.5 measurements 

were also ~0% for both Methods (mean= 3.1% for Method 1 and -18.3% for Method 2). Note that 

the mean values are higher because the different background corrections produce different values 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/sensirion-sps30-evaluation-kit---field-evaluation.pdf
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/sensirion-sps30-evaluation-kit---field-evaluation.pdf


for large spikes in PM2.5 measurements. There are few such spikes in the data. Given the small 

differences in median PM2.5c values from the two methods, we chose the splines-of-minimum 

approach to obtain background concentrations. This is supported by previous research that found 

this approach to be an effective way to account for background concentrations for a range of 

pollutants over a variety of meteorological conditions and sampling routes (Brantley et al., 2014).  

S3 Covariates for Land-Use Regression 

The following section delineates the socioeconomic, land-use and transportation-related 

independent variables used in the random forest model. 

S3.1 Poverty Index 

2008 estimates of proportion of people per 1 km x 1km grid cell living in poverty, as defined by 

the Multidimensional Poverty Index (MPI) (http://www.ophi.org.uk/policy/multidimensional-

poverty-index/, last accessed June 29, 2020), were obtained from WorldPop (Figure S2 in 

Supplementary Information). Briefly, Bayesian model-based geostatistics were used to derive 

these estimates, in combination with high resolution gridded spatial covariates applied to GPS-

located household survey data on poverty from the Kenyan Demographic Health Survey. This 

index encompasses the various deprivations experienced by people in their daily lives by 

incorporating indicators that fall in three dimensions: Education (Years of schooling, School 

attendance), Health (Child mortality, Nutrition) and Standard of Living (Cooking Fuel, Sanitation, 

Water, Electricity, Floor, Asset Ownership). The Alkire-Foster (AF) method was used to 

compute the MPI by combining these indicators. 

 

As displayed in Figure S2, the eastern part of the city is poorer than western part. Scholars 

have shown that the deeply rooted class-based segregation patterns in Nairobi align closely 

with racial segregation patterns created during the colonial period. Therefore, although poverty 

may have intensified in certain locations in later years, the overall pattern in 2020 is likely to be 

the same as in 2008. Note that the poverty index is coarse and doesn’t appear to capture poorer 

neighborhoods closer to the city center which are densely populated (Figure S2). 

https://www.zotero.org/google-docs/?XCDcsG
http://www.ophi.org.uk/policy/multidimensional-poverty-index/
http://www.ophi.org.uk/policy/multidimensional-poverty-index/


 

 

Figure S2: Poverty index classified into deciles for Nairobi and its immediate environs 

S3.2 Population Density 

2015 population estimates for each 100 m x 100 m grid cell in Nairobi (Figure S3 in 

Supplementary Information) were obtained from WorldPop 

(https://www.worldpop.org/geodata/summary?id=83, Last Accessed June 12, 2020). 

https://www.worldpop.org/geodata/summary?id=83


 

Figure S3: Population density classified into deciles for Nairobi and its immediate environs 

  

S3.3 Land-Use 

Columbia University digitized plat maps of Nairobi to produce a land use map for the city in 

2005 (http://csud.ei.columbia.edu/projects/nairobi-regional-project/nairobi-gis-maps/ 

, Last accessed July 11, 2020). This map was updated and validated for the year 2010 in 

partnership with the University of Nairobi (Figure S4 in Supplementary Information).  

 

Although, more recent pdf versions of land use in Nairobi are available and reproduced in the 

Nairobi Integrated Urban Development Master Plan produced by the Japanese International 

Cooperation Agency (JICA), the data from the newer map has not been made publicly available. 

http://csud.ei.columbia.edu/projects/nairobi-regional-project/nairobi-gis-maps/


 

Figure S4: Land-use in Nairobi in 2010 

S3.4 Transportation-related sources 

A surrogate for traffic: average travel friction (min-m−1), or travel time was obtained from the 

University of Oxford Malaria Atlas Project (https://malariaatlas.org/research-project/accessibility-

to-cities/) global travel friction dataset at a 1 km x 1 km scale (Pfeffer et al., 2018).  

 

We also downloaded the Nairobi roads shapefile, which classified roads into 1) Bound Surface, 

2) Cutline, 3) Dry Weather Roads, 4) Loose Surface, 5) Main Track (Motorable), from 

(http://www.virtualkenya.org/).  

 

We downloaded matatu (the main form of public transport) stops from the Digital Matatus 

project that were updated as of 2019 (http://www.digitalmatatus.com/map.html). We also 

downloaded the number of matatu trips associated with each stop. This serves as a proxy of 

how busy each matatu stop was. 

http://www.virtualkenya.org/
http://www.digitalmatatus.com/map.html


 

Unfortunately, no information about the use of biomass for household energy purposes or 

industrial sources were available for Nairobi. 

S3.5 Neighborhoods 

We downloaded the administrative boundaries of Nairobi from Diva-GIS (https://www.diva-

gis.org/gdata) (Figure S5). 

 

 

Figure S5: Nairobi neighborhoods 

S4 Random Forest Cross Validation  

Our 10-fold cross-validation (CV) exercise occurred in the following manner: The model fitting 

dataset was randomly split into 10 groups, with each group containing about 10% of the grid 

cells. In each cross-validation iteration, we select nine groups of the grid cells. All of the data 



from these grid cells are used to fit the model and make predictions of the remaining group. We 

repeated this process 10 times, until every group was predicted.  

 

The CV process was used to tune two major RF hyperparameters: the number of decision trees 

(ntree) and the number of predictors randomly tried at each split (mtry). Briefly, the optimal mtry 

was determined by optimizing the “pseudo R2”: the fraction of variance of the PM2.5c 

measurements explained by the “out of bag” (OOB) predictions. An OOB prediction is based 

only on trees in the random-forest ensemble that were not trained using the PM2.5c observations 

being predicted. Each mtry value was used to train 10 random-forests. The average pseudo R2 

was used to select the best mtry value.  A Moran I test on the residuals of the RF model was 

conducted to confirm that there was no spatial autocorrelation that we needed to account for. 

S5 Universal Kriging 

Kriging is a geostatistical interpolation technique that works on the assumption that the spatial 

variation in the feature (PM2.5) is homogeneous over the domain and depends only on the 

distance between sites. Spatial dependence is the property of observations over space to 

exhibit functional similarity as a result of proximity (Jerrett et al., 2005). Kriging models are 

considered optimal interpolators as they provide the best linear unbiased estimate of the value 

of the variable at any point in the coverage (Burrough and McDonnell, 1998). The universal 

kriging procedure, unlike ordinary kriging, incorporates a drift function to account for a structural 

component in the spatial variation. A linear drift function was selected in this study because this 

method resulted in lower kriging variances in PM2.5c estimates than did a quadratic drift 

function. We use the natural logarithm to transform PM2.5c concentrations for this interpolation 

technique to obtain a more uniform distribution.   

  

In order to provide a function that describes the spatial dependence of the PM2.5c 

concentrations, we used the package ‘automap’ in R to automatically fit a variogram to the data. 

This package iterates over various variogram models to pick the model that has the lowest 

residual sum of squares. We also attempted to interpolate PM2.5c concentrations using kriging 

with an external drift that allows the mean PM2.5c values over space to depend on external 

spatial variables, in addition to the internal drift with the spatial coordinates. However, including 



the covariates described in Section S2 in the SI, namely the MPI, population density, land-use 

type, transportation-related covariates such as the density of different types of roadways, travel 

friction, matatu stops and matatu trips, and area of different overlapping neighbourhoods in a 

linear manner did not improve the model. We therefore did not include an external drift in the 

final model. 

 

As in the case of the RF, we also conducted a 10-fold cross validation (CV) exercise. We report 

the RMSE and R2 of the best model determined from the CV exercise. 

S6 Results 

S6.1 Mobile monitoring estimates 

 



 

 

 

Figure S6: a) The fractional change ((PM2.5c,after - PM2.5c,before)/(PM2.5c,before + PM2.5c,before) in PM2.5c 

after the curfew was imposed, from March 25, 2020 - May 5, 2020, compared to levels for each 



100 m grid cell from March 13, 2020 - March 25, 2020, Median PM2.5c values  for each 100 m 

grid cell in Nairobi b) before and c) after the curfew had started in units of μg/m3 



 



Figure S7: PM2.5c values  for grid cells for which the median was stable (normalized error in 

median < 20% and the number of days over which the grid cell was sampled > 1) b) before and 

c) after the curfew had started in units of μg/m3 

S6.2 : Random forest results run using stable PM2.5c values only 

Mean PM2.5 concentration before the COVID-19 curfew predicted using this mode was 34.0 

μg/m3 (Median: 34.0 μg/m3). Mean concentration during the COVID-19 curfew was: 26.0 μg/m3 

(Median: 26.5 μg/m3).  A Wilcoxon rank sum test revealed a statistically significant decrease in 

PM2.5 concentrations in Nairobi overall during the COVID-19 crisis for the time-period of this 

study. 

 

The top-five variables with the highest predictive power during before the curfew were: 1) 

Longitude, 2) The length of railway lines in the 500 m buffer around each grid cell, 3) Area of the 

Lumumba neighborhood in the 100 m buffer of each grid cell, 4) Area of unknown land in the 

500 m buffer around each grid cell, 5) Area of the Loresho/Kyuna neighborhood in the 100 

mbuffer of each grid cell. 

 

The top-five variables with the highest predictive power during the curfew were: 1) Longitude, 2) 

The area of the neighborhood Pangani in the 100 m buffer around each grid cell, 3) The length 

of dry weather roads in the 500 m buffer around each grid cell, 4) The length of all roads in the 

500 m around each grid cell, 5) The area of residential land in the 500 m of each grid cell. 

 

The 10-fold cross-validation approach for the RF model using data before and during the 

COVID-19 curfew yielded RMSEs (MAEs) of 10 μg/m3 (3 μg/m3 ) and 7 μg/m3 (4 μg/m3 ), 

respectively. The R2 value of the cross-validated models before and during the COVID-19 

curfew were both 0.96. 

 

 



 

 



 



 

Figure S8: a) The fractional change ((PM2.5cafter - PM2.5cbefore)/(PM2.5c,before + PM2.5c,before) in 

predicted PM2.5c after the curfew was imposed, from March 25, 2020 - May 5, 2020, compared 

to predicted levels before. Estimated PM2.5c values for each 100 m grid cell in Nairobi b) before 

and c) after the curfew in units of μg/m3 using RF models. PM2.5c concentrations were estimated 

via a random forest using grid cells with a stable PM2.5c only. The poorer neighborhoods in 

Nairobi are circled in red and the wealthier neighborhoods are circled in blue.  

S6.3 : Universal Kriging 

Mean PM2.5 concentration before the COVID-19 curfew interpolated using kriging  was 17.2 

μg/m3 (Median: 14.8 μg/m3). Mean concentration during the COVID-19 curfew was: 22.0 μg/m3 

(Median: 21.3 μg/m3).  A Wilcoxon rank sum test revealed a statistically significant increase in 

PM2.5 concentrations in Nairobi overall during the COVID-19 crisis for the time-period of this 

study. 

 

The R2 from the Universal Kriging before the curfew was 0.66 and after was 0.64. The RMSEs 

(MAE) values were 28 μg/m3 (11 μg/m3 ) and 30 μg/m3 (10 μg/m3 )  before and during the curfew 

respectively. Mean predicted PM2.5c concentrations before the COVID-19 curfew was 17.2 μg/m3 

(Median: 14.8 μg/m3 ). Mean predicted concentration during the COVID-19 curfew was a little 

higher: 21.6 μg/m3  (Median: 21.3 μg/m3 ). The lack of variation in the PM2.5 surfaces derived 

from this approach in the outskirts of Nairobi (Ruai in the east and Karen in the west as 

displayed in Figure S7), indicate the uncertainty in predictions due to the lack of measurements 

in these neighbourhoods. However, in areas close to the city center where the majority of 

measurements had been made, we see the results from this approach agree well with that of 

the RF predictions displayed in the main analysis. 

 



 



 



Figure S9: a) The fractional change ((PM2.5c,after - PM2.5c,before)/(PM2.5c,before + PM2.5c,before) in 

interpolated PM2.5c via universal kriging after the curfew was imposed, from March 25, 2020 - 

May 5, 2020, compared to interpolated levels before, Median PM2.5c values  for each 100 m grid 

cell in Nairobi b) before and c) after the curfew in units of mg/m3.  
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