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1 Data Appendix

1.1 Yield Data

Our dependent variables are country-level yields (tons/ha) for five staple crops: maize,
sorghum, millet, groundnuts and cassava in Sub-Saharan Africa. The yield data as well as
total acreage were obtained from the FAO website for the years 1961-2007 (accessed Novem-
ber 2008).1 Summary statistics of average yields are given in the top row of Figure A1. If a
country had several consecutive years with identical yields, it was flagged and excluded from
the estimation of the coefficients in our baseline model. Such flagged countries are marked
with a dotted surface in Figure A1. While these countries were eliminated in the estimation,
we still evaluated the predicted yield changes under climate change for these countries using
the estimated coefficients we obtained from the panel data set of the remaining countries
(see Section 1.4 below).

1.2 Growing Season

The growing season for each crop and country was taken from [1].

1.3 Weather Data

The yield data set is merged with two weather data sets.

(i) CRU 2.1: The Climatic Research Unit of the University of East Anglica provides a
data set of monthly minimum and maximum temperatures as well as precipitations for
the years 1901-2002 on a 0.5 degree grid [2] (accessed November 2008).2

(ii) NCC: Thanh Ngo-Duc at the University of Tokyo has constructed a corrected data set
of the National Center for Environmental Prediction (NCEP). It is a 6-hour time series
for temperatures on a 1 degree grid for the years 1949-2000 [4] (accessed November
2008).3 Each day has four temperature and precipitation readings at midnight, 6am,
noon, 6pm. We construct the daily minimum (maximum) as the minimum (maximum)
of the four daily observations. These data are reanlysis data, using NOAA’s NCEP
data base that are calibrated to monthly averages from the CRU data base.

1http://faostat.fao.org/site/526/default.aspx
2http://www.cru.uea.ac.uk/∼timm/grid/CRU TS 2 1.html
3http://hydro.iis.u-tokyo.ac.jp/ thanh/wiki/index.php?n=Main.NCCDataset
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Figure A1: Descriptive Statistics: Average Yields and Growing Area in 2000

Panel A: Average Yields
Maize
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Panel A: Growing Area

Notes: The top row displays average yields. Countries with flagged yield series have black dots superimposed). The bottom row gives the

fraction of each 5-minute grid cell that is used to grow a crop [3]. Fractions larger than 1 indicate double-cropping.
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We use Geographic Information Systems (GIS) to link the grid-points of the two weather
data sets to countries. The weather in a country is then derived in two alternative ways:

(i) Land-cover weighted average: The land cover data from [3] provides the amount of
cropland of each crop in each 5-minute grid cell. The weather in a country is the
cropland-area weighted average of all grids, where we only count the 5-minute cells
that are within a country’s boundaries. Note that the weather for maize in a given
year and country might be different than the weather for millet in the given year and
country, as we use different weights for the weather grids within a country, even if the
growing season were to be identical. The growing areas are shown in the bottom panel
of Figure A1.

(ii) Country Average: all grid points that fall within a country are averaged uniformly.

The spatial distribution of temperatures for all countries in our data is shown in panel A of
Figure A2 under the CRU 2.1 data base, which has the finest grid structure.

Our baseline model uses the area-weighted average of the NCC weather data.

1.4 Climate Change Predictions

We obtain predictions from 16 climate change models from the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) at Lawrence Livermore National Laboratory.4

Each model gives predicted changes in minimum and maximum temperature as well as
relative changes in precipitation for the period 2045-2065 compared to the historic baseline
period 1961-2000 under the A1b scenario. The 16 models are: (i) bccr bcm 2.0; (ii) cccma
cgcm 3.1; (iii) cccma cgcm 3.1 t63; (iv) cnrm cm3; (v) csiro mk 3.0; (vi) gfdl cm 2.0; (vii)
gfdl cm 2.1; (viii) giss aom; (ix) giss model e.r; (x) iap fgoals 1.0g; (xi) ipsl cm4; (xii) miroc
3.2 hires; (xiii) miroc 3.2 medres; (xiv) miub echo g; (xv) mpi echam5; (xvi) mri cgcm 2.3
2a.

Predicted changes at each grid of the historic weather data sets (CRU 2.1 or NCC, see
Section 1.3) are weighted averages of the GCM grids. We use a Kernel smoother (normal
density) with a bandwidth of 2 degrees. The predicted monthly change in maximum and
minimum temperature is then added to the historic baseline series (1961-2000 for NCC
and 1961-2002 for CRU 2.1), or for the case of precipitation, the historic baseline series is
multiplied by the predicted relative change. The weather variables are recalculated with
the shifted historic time series, and the average over all years is taken and compared to the
historic average. The predicted change in average temperature is shown in the bottom panel
of Figure A1.

Predicted changes are shown in panel B of Figure A2 for the CRU 2.1 grid, which has
the finest grid structure.

4http://www-pcmdi.llnl.gov
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Figure A2: Descriptive Statistics: Historic Average Temperatures and Predicted Changes

Panel A: Average Temperature
Maize (All CRU Grids)
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Panel B: Climate Change Predictions
Maize (All CRU Grids)
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Notes: The top row displays average temperature during the gropwing season. The bottom row gives the mean predicted increase in average

temperatures during the growing season among our 16 climate change models. Both panels use the CRU 2.1 weather data set, which features

a finer grid than the NCC data sets.

iv



1.5 Scatter Plots

Figures A3 and A4 display scatter plots of our panel data. The y-axis displays log yields,
while the x-axis displays a temperature measure (average temperature in the left column and
degree days above 30◦C in the right column. Observations from one country are displayed
in a unique color-symbol combination. Countries with suspect yields (e.g., several consecu-
tive years with identical yields) are displayed in grey. These countries are excluded in the
estimation of our main results. The color of a country is determined by the average of the
temperature variable over all years in the panel, ranging from the coolest country (blue) to
the hottest country (red).

Figure A3: Scatter Plots: Maize and Sorghum
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Notes: Panels display scatter plots of log yields against two temperature measures. The left column uses

average temperature throughout the growing season (Using data from the CRU 2.1 data base), while the

right column uses degree days above 30◦C (constructed from the NCC data base). Observations from each

country have a unique color-symbol combination. Countries are ordered from coldest average (blue) to

warmest average (red). Flagged yields are displayed in grey.
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Figure A4: Scatter Plots: Millet, Groundnuts, and Cassava
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Notes: Panels display scatter plots of log yields against two temperature measures. The left column uses

average temperature throughout the growing season (Using data from the CRU 2.1 data base), while the

right column uses degree days above 30◦C (constructed from the NCC data base). Observations from each

country have a unique color-symbol combination. Countries are ordered from coldest average (blue) to

warmest average (red). Flagged yields are displayed in grey.
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2 Models

Our regression equation links log yields yit in country i in year t to various specifications
of weather f(wit) as outlined below. A log-model implies that the effect of temperature
on yields is in relative terms, i.e., a certain temperature reduces/increase yields by a given
percentage independent of the baseline. All regression include a quadratic time trend (to
capture overall technological progress) as well as country fixed effects ci. I.e.,

yit = f(wit) + γ1t + γ2t
2 + ci + ǫit

2.1 Regression Model

We use four specifications to model the impact of weather

(i) Average weather. We use a linear specification in both the mean temperature during
the growing season h̄it as well as total precipitation pit, i.e.,

f(wit) = α1h̄it + β1pit

(ii) Quadratic in average weather. We use a quadratic specification in both the mean
temperature during the growing season h̄it as well as total precipitation pit, i.e.,

f(wit) = α1h̄it + α2h̄
2
it + β1pit + β2p

2
it

(iii) Degree days. Agronomists have stipulated that log-yield growth is piecewise linear.
This underlies the concept of degree days, which is a truncated temperature variable.
We use two degree days variables: (a) degree days 10-30◦C (d10−30,it) and degree days
above 30◦C (d30,it). The former measures temperatures above 10◦C and below 30◦C,
i.e., a temperature of 9, 10, 11, 12, 30, and 31◦C would result in 0, 0, 1, 2, 20, and
20 degree days 10-30◦C, respectively. Degree days above 30◦C measures temperatures
above 30◦C with no upper bound, i.e., a temperature of 29, 30, and 31◦C would result
in 0, 0, and 1, degree days above 30◦C, respectively. The intuition is that temperatures
between 10-30◦C are generally considered yield-enhancing, while temperatures above
30◦C are yield-decreasing. The exact bounds depend on the crop in question. They
have been estimated for corn, soybeans, and cotton in the United States using a much
larger data set [6]. Given the limited number of observations we have in Africa, we
exogenously fix these bounds, but would like to note that the overall results are robust
to perturbations of these bounds. For the NCC data base, we follow [6] and construct
the temperature distribution within a day by fitting a sinusoidal curve between the daily
minimum and maximum temperature. Since the CRU data base only gives monthly,
and not daily values, we use Thom’s formula to approximate the distribution of daily
temperatures within a month [8, 7] as described in [5]. We again include a quadratic
of total precipitation during the growing season to get

f(wit) = α1d10−30,it + α2d30,it + β1pit + β2p
2
it

vii



(iv) Non-parametric in temperature. While the concept of degree days assumes a piecewise-
linear function in temperatures, there is some discussion about the optimal breakpoint.
[6] derive the time temperatures are exposed to various temperatures, however the sam-
ple size of that study was much larger compared to the current panel. In this paper we
therefore break the degree-days variables into subcategories of 5◦C intervals, estimat-
ing a piecewise linear function on the intervals [10◦C,15◦C); [15◦C,20◦C); [20◦C,25◦C);
[25◦C,30◦C); [30◦C,35◦C); [35◦C,oo◦C). The model becomes

f(wit) = α1d10−15,it + α2d15−20,it + α3d20−25,it + α4d25−30,it + α5d30−35,it + α6d35,it

+β1pit + β2p
2
it

2.2 Fertilizer Use - Estimation Subsets

Planted crop varieties and, correspondingly, responses to weather may vary with fertilizer
use. There are two countries in Sub-Saharan Africa with historically higher fertilizer usage:
South Africa and Zimbabwe. We therefore spilt our sample in two and estimate separate
models for (i) a panel of South Africa and Zimbabwe and (ii) a panel of the remaining
countries in Subsaharan Africa unless otherwise noted.

Note that Millet and Cassava are either not grown in high-fertilizer countries, or yields
for these crops were flagged and excluded. We are hence not able to estimate a separate
regression equation for these two crops in high-fertilizer countries.

2.3 Error Terms

To obtain the correct confidence intervals we use a bootstrap where we randomly sample
years with replacement. In our baseline panel (NCC weather data) we have 40 years and
we hence draw 40 years with replacement and always include all countries for which we
have observations in that year. We employ 1000 bootstrap runs. The motivation for using a
grouped bootstrap is that weather is highly spatially correlated, while it is less so temporally
(except for some some weak weather cycles).

2.4 Climate Change Impacts

The predicted climate change impacts are changes in total production keeping the growing
area and crops grown constant. We derive the impacts as follows: For each of our 1000
bootstrap runs we calculate the predicted yield under the historic time series (1961-2000 for

the NCC weather data base) w0
it as y0 = ef(w0

it
)+δi+

σ
2

2 , where the country-specific constant
δi = ci + γ1t̄ + γ2t̄

2 ensures that the predicted log yield in a country equals the average log
yield in the sample. The variance of the error terms σ2 is included since the exponent is a
convex function and hence the expected value is greater than the function evaluated at the
expected value (Jensen’s inequality). Total production in the baseline is the area-weighted
sum of all country-specific yields, where the area is the average production area in the historic
yield data (1961-2007).
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The predicted yield under future climate w1
it is y1 = ef(w1

it
)+δi+σ2/2, which is again weighted

by historic growing areas.5 The predicted change in total production is y1

y0

− 1.
Since predicted climate change impacts only depend on past and future weather as well as

the coefficient estimates (but not on historic yields), we also derive the impacts for countries
with flagged yields that were excluded in the estimation sample.

We calculate the relative impact for each of our 1000 bootstrap simulations and each of
our 16 GCMs to derive the distribution of impacts.

3 Regression Results

Tables A1 through A4 present the regression results of the weather coefficients in various
model specifications outlined in Section 2.1. All regression use our baseline weather data set
(NCC) and weight all weather grids within a country by the cropland area from a satellite
scan. Separate equations are estimated for high-fertilizer countries (South Africa and Zim-
babwe) as well as low-fertilizer countries (remaining Sub-Saharan countries). All regressions
include separate quadratic time trends for high and low-fertilizer countries (not reported).

5we do not consider shifts in the growing area in this analysis.

Table A1: Regression Results: Model with Average Temperature

Maize Sorghum Millet Groundnuts Cassava
Countries with High Fertilizer Use

Avg. Temperature -0.246∗∗∗ -0.188∗ -0.208∗∗∗

(0.0761) (0.0992) (0.0770)
Precipitation 0.000900∗∗∗ 0.000618 0.00116∗∗∗

(0.000182) (0.000390) (0.000243)

Countries with Low Fertilizer Use
Avg. Temperature -0.104∗∗∗ -0.0586∗∗ -0.0901∗∗∗ -0.0807∗ -0.0748∗∗

(0.0289) (0.0240) (0.0287) (0.0428) (0.0299)
Precipitation -0.0000240 0.000314∗∗∗ 0.000116 0.000296∗∗∗ -0.000100

(0.0000833) (0.0000781) (0.0000758) (0.000113) (0.0000757)
R-squared 0.5870 0.6253 0.6756 0.3924 0.5170
Observations 1240 1080 640 912 640
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Table reports regression coefficients for each crop response function as well as stan-
dard errors in brackets. High-fertilizer countries are South Africa and Zimbabwe (see Sec-
tion 2.2). All regressions include quadratic time trends.
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Table A2: Regression Results: Model with Average Temperature Squared

Maize Sorghum Millet Groundnuts Cassava
Countries with High Fertilizer Use

Avg. Temperature 0.938 0.200 2.377∗

(0.920) (0.754) (1.402)
Avg. Temperature2 -0.0269 -0.00804 -0.0575∗

(0.0217) (0.0183) (0.0316)
Precipitation 0.00384∗∗∗ 0.00535∗∗∗ 0.00457∗∗∗

(0.00148) (0.00189) (0.00119)
Precipitation2 -0.00000235∗∗ -0.00000461∗∗ -0.00000290∗∗∗

(0.00000114) (0.00000180) (0.000000983)

Countries with Low Fertilizer Use
Avg. Temperature -0.185 0.382∗∗∗ 1.249∗∗∗ 0.674∗∗ -1.220∗∗

(0.201) (0.141) (0.214) (0.290) (0.533)
Avg. Temperature2 0.00184 -0.00878∗∗∗ -0.0246∗∗∗ -0.0149∗∗∗ 0.0237∗∗

(0.00386) (0.00289) (0.00431) (0.00551) (0.0107)
Precipitation 0.000301 0.000529∗∗∗ 0.000929∗∗∗ 0.000781∗ 0.000146

(0.000260) (0.000204) (0.000333) (0.000424) (0.000216)
Precipitation2 -0.000000171 -0.000000120 -0.000000486∗∗∗ -0.000000307 -8.01e-08∗

(0.000000112) (9.88e-08) (0.000000185) (0.000000229) (4.74e-08)
R-squared 0.5885 0.6336 0.6952 0.4024 0.5257
Observations 1240 1080 640 912 640
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Table reports regression coefficients for each crop response function as well as standard errors
in brackets. High-fertilizer countries are South Africa and Zimbabwe (see Section 2.2). All regressions
include quadratic time trends.
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Table A3: Regression Results: Degree Days Model

Maize Sorghum Millet Groundnuts Cassava
Countries with High Fertilizer Use

Degree Days 10-30◦C -0.000310 -0.0000119 -0.000552
(0.000582) (0.000603) (0.000810)

Degree Days 30◦C -0.00725∗∗ -0.00624∗∗ -0.00260
(0.00321) (0.00299) (0.00339)

Precipitation 0.00306∗∗ 0.00437∗∗ 0.00360∗∗∗

(0.00148) (0.00171) (0.00124)
Precipitation2 -0.00000178 -0.00000378∗∗ -0.00000209∗∗

(0.00000111) (0.00000167) (0.000000984)

Countries with Low Fertilizer Use
Degree Days 10-30◦C -0.000592∗∗∗ 0.0000218 -0.000114 -0.000263 -0.000446∗∗∗

(0.000172) (0.000129) (0.000173) (0.000235) (0.000108)
Degree Days 30◦C -0.000234 -0.00170∗∗∗ -0.00116∗∗∗ -0.00130∗∗∗ 0.00188∗∗∗

(0.000328) (0.000291) (0.000297) (0.000451) (0.000450)
Precipitation 0.000287 0.000263 0.000835∗∗ 0.000484 0.000279

(0.000276) (0.000229) (0.000394) (0.000474) (0.000208)
Precipitation2 -0.000000166 -8.64e-09 -0.000000437∗∗ -0.000000140 -0.000000100∗∗

(0.000000118) (0.000000108) (0.000000216) (0.000000255) (4.68e-08)
R-squared 0.5896 0.6432 0.6883 0.3998 0.5317
Observations 1240 1080 640 912 640
∗

p < 0.10, ∗∗
p < 0.05, ∗∗∗

p < 0.01
Notes: Table reports regression coefficients for each crop response function as well as standard
errors in brackets. High-fertilizer countries are South Africa and Zimbabwe (see Section 2.2).
All regressions include quadratic time trends.
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Table A4: Regression Results: Model with Various Degree Days Ranges

Maize Sorghum Millet Groundnuts Cassava
Countries with High Fertilizer Use

Degree Days 10-15◦C 0.00446 -0.00154 -0.0113
(0.00578) (0.00631) (0.00878)

Degree Days 15-20◦C -0.00338 0.00165 0.00842
(0.00384) (0.00391) (0.00583)

Degree Days 20-25◦C 0.000811 -0.00119 -0.00721
(0.00267) (0.00271) (0.00478)

Degree Days 25-30◦C -0.000979 0.000621 0.00278
(0.00425) (0.00475) (0.00674)

Degree Days 30-35◦C 0.00707 -0.00320 0.00527
(0.0112) (0.0105) (0.0150)

Degree Days 35◦C -0.0955∗∗∗ -0.0213 -0.0414
(0.0338) (0.0240) (0.0337)

Precipitation 0.00317∗∗ 0.00436∗∗ 0.00341∗∗∗

(0.00141) (0.00178) (0.00122)
Precipitation2 -0.00000181∗ -0.00000374∗∗ -0.00000185∗

(0.00000108) (0.00000173) (0.000000955)

Countries with Low Fertilizer Use
Degree Days 10-15◦C -0.00602∗∗ -0.00252 -0.00789 -0.00135 0.00289

(0.00267) (0.00237) (0.00592) (0.0115) (0.00571)
Degree Days 15-20◦C -0.000418 0.000546 0.00196 0.00349∗∗ -0.00265

(0.000792) (0.000722) (0.00234) (0.00155) (0.00162)
Degree Days 20-25◦C -0.000379 -0.000722 -0.0000583 -0.00212∗∗∗ 0.0000309

(0.000546) (0.000567) (0.000659) (0.000810) (0.000548)
Degree Days 25-30◦C -0.000698 0.000788 -0.000546 0.000607 -0.000134

(0.000440) (0.000600) (0.000448) (0.000668) (0.000401)
Degree Days 30-35◦C 0.000532 -0.00160 0.000283 -0.00102 0.000581

(0.00121) (0.00117) (0.00110) (0.00141) (0.000971)
Degree Days 35◦C -0.00150 -0.00279 -0.00313∗ -0.00313 0.00304

(0.00175) (0.00194) (0.00161) (0.00254) (0.00310)
Precipitation 0.000311 0.000274 0.000912∗∗ 0.000525 0.000194

(0.000267) (0.000232) (0.000409) (0.000460) (0.000221)
Precipitation2 -0.000000173 5.16e-09 -0.000000480∗∗ -0.000000152 -8.05e-08

(0.000000112) (0.000000112) (0.000000223) (0.000000244) (4.98e-08)
R-squared 0.5949 0.6426 0.6884 0.4069 0.5361
Observations 1240 1080 640 912 640
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Table reports regression coefficients for each crop response function as well as standard errors
in brackets. High-fertilizer countries are South Africa and Zimbabwe (see Section 2.2). All regressions
include quadratic time trends.
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4 Robustness

We explore the robustness of our results to various specifications checks. Our main finding
that Maize, Millet, Sorghum, and Groundnuts yields are negatively impacted by climate
change does not change in any of these checks.

4.1 Weather Data

Our baseline data set uses the NCC data set (see description in Section 1.3 above). The
main reason why we chose this data set is that it gives four observations per day and hence
is better suitable to derive degree days, which depend on daily minimum and maximum
temperature. The first robustness check uses the CRU 2.1 weather data set instead. The
latter gives monthly averages, but on a finer geographic scale than NCC.

We cross-check our results using a completely different data set. It should be noted that
the correlation of average weather outcomes in the NCC and CRU 2.1 data bases is very high.
Both models agree which areas are hotter on average and receive more rainfall. However,
deviations from means, i.e., by how much was a given year above or below average outcomes
is much less correlated. Year specific weather shocks are more difficult to construct given
the sparsity of weather data in Africa. As outlined in the main paper, a panel model relies
on deviations from mean growing conditions, i.e., by how much is a particular year warmer
or colder than the average outcome, where models start to diverge somewhat.

The fact that we get very similar results using a completely different weather data set
(NCC is based on NOAA’s Centers for Environmental Prediction reanalysis data, while CRU
2.1 smoothes observational weather station data) is reassuring. This suggests that our results
are not driven by model-specific measurement error, which will get amplified in a panel that
takes out the mean of each variable in each country. Since Africa does not have as good of a
weather data coverage as, for example, the United States, this is an important confirmation
in our view. Measurement error could potentially be substantial and lead to attenuation
bias.

Figure A5 replicates Figure 2 of the main paper with the different CRU 2.1 weather data
set. Flagged yields are excluded from the regression and we estimate separate equations for
countries with high and low fertilizer use. The original estimates using the NCC data set
are shown in red, while the results using the CRU 2.1 weather data set are shown in blue.
Figure A6 displays the distribution of impacts among countries, where we again include
1000 bottstrap runs for each of the 16 climate change predictions for the mid-century (a1b
scenario).
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Figure A5: Aggregate Results using CRU 2.1 Weather Data Set
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Notes: Predicted changes in total production (percent) in SSA from climate change in 2046-2065 relative to

1961-2002. Boxplots show the combined distribution of predicted impacts from (i) sampling one of the 16

climate change models and (ii) bootstrapping the model parameters. The median predicted impact is shown

as solid line, while the box shows the 25-75 percentile range. Whiskers extend to the 5 and 95 percentile.
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Figure A6: Country-Level Results using CRU 2.1 Weather Data Set

Notes: Distribution of impacts from climate change by country (percent yield change). Mean impacts

(middle column) as well as the 5 and 95 percentile (left and right column, respectively) are shown. Each

row represents one crop.
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4.2 Construction of Country-Level Weather Data Sets

Our baseline model weighs all grid points that fall within a country by the growing area that
was contained in each grid cell in a satellite scan in 2000 (see Section 1.3). This growing
area might not be representative for early years. In a sensitivity check we simply average all
grids in a country. The results are shown in Figure A7.

The underlying weather data set is NCC (Section 1.3). Flagged yields are excluded from
the regression and we estimate separate equations for countries with high and low fertilizer
use.

Figure A7: Aggregate Results Averaging all Weather Grids within a Country
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Notes: Predicted changes in total production (percent) in SSA from climate change in 2046-2065 relative to

1961-2000. Boxplots show the combined distribution of predicted impacts from (i) sampling one of the 16

climate change models and (ii) bootstrapping the model parameters. The median predicted impact is shown

as solid line, while the box shows the 25-75 percentile range. Whiskers extend to the 5 and 95 percentile.
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4.3 Pooled Estimation Sample (Irrespective of Fertilizer Use)

Our baseline model fits a separate regressions for countries with traditionally high fertilizer
use (a panel of South Africa and Zimbabwe) and a panel of the remaining countries in Sub-
Saharan Africa (see Section 2.2). The F-test weather the coefficients on all climate variable
are the same in the two subsets fails with a p-value less than 0.05).

In a sensitivity check we pool all countries in the estimation of the coefficients and then
evaluated the predicted impacts. Compared to our baseline results in Figure 2 of the main
paper, the median impacts are rather robust, but the variance of the distribution decreases
in Figure A8 (Recall that we had Millet and Cassava had no high-fertilizer observations and
the results are hence identical to the baseline). This is not surprising as the subsample of
high-fertilizer countries (South Africa and Zimbabwe) is small and hence the coefficients are
estimated less precisely i.e., with larger standard errors. These larger errors, combined with
the fact that these countries account for a significant share of overall production implies that
the aggregate impacts show wider fluctuations as well.

The underlying weather data set is NCC (Section 1.3), where all grids within a country
are averaged using a satellite scan of the growing area in 2000. Flagged yields are excluded
from the regression.
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Figure A8: Aggregate Results using a Pooled Model of High and Low-Fertilizer Countries
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Notes: Predicted changes in total production (percent) in SSA from climate change in 2046-2065 relative to

1961-2000. Boxplots show the combined distribution of predicted impacts from (i) sampling one of the 16

climate change models and (ii) bootstrapping the model parameters. The median predicted impact is shown

as solid line, while the box shows the 25-75 percentile range. Whiskers extend to the 5 and 95 percentile.
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4.4 Including Flagged Yields

Our baseline model excludes countries that feature some suspicious yields (e.g., several con-
secutive years with identical yields). As long as these interpolated yields are not systemat-
ically related to weather fluctuations, including them will cause no bias. Accordingly, the
median impacts do not change much in Figure A9, but the variance increases somewhat.

The underlying weather data set is NCC (Section 1.3), where all grids within a country
are averaged using a satellite scan of the growing area in 2000. Separate equations are
estimated for countries with high and low fertilizer use.

Figure A9: Aggregate Results using CRU 2.1 Weather Data Set
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Notes: Predicted changes in total production (percent) in SSA from climate change in 2046-2065 relative to

1961-2000. Boxplots show the combined distribution of predicted impacts from (i) sampling one of the 16

climate change models and (ii) bootstrapping the model parameters. The median predicted impact is shown

as solid line, while the box shows the 25-75 percentile range. Whiskers extend to the 5 and 95 percentile.

xix



4.5 Uniform Climate Change Scenarios

Figure A10 through Figure A13 show the distribution of impacts under 6 uniform climate
change scenarios. We increase temperatures by 1◦C, 2◦C, 3◦C, 4◦C, 5◦C, and 6◦C respectively
while leaving precipitation unchanged. The rows within each panel represent combinations
of various specifications as explained in Figure 2 of the main paper.

The underlying weather data set is NCC (Section 1.3), where all grids within a country
are averaged using a satellite scan of the growing area in 2000. Flagged yields are excluded
from the regression and we estimate separate equations for countries with high and low
fertilizer use.

Figure A10: Uniform Climate Scenarios (+1◦C)
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Notes: Replication of Figure 2 in the main paper for a uniform +1◦C scenario. Bars show aggregate impact

on crop production in Africa in percent. The box marks the 25-75 percentile range, while the inner solid line

is the median. Whiskers extend to the 5 and 95 percentile.
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Figure A11: Uniform Climate Scenarios (+2◦C and +3◦C)
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Notes: Replication of Figure 2 in the main paper for a uniform +2◦C scenario in the top panel and a +3◦C

scenario in the bottom panel. Bars show aggregate impact on crop production in Africa in percent. The box

marks the 25-75 percentile range, while the inner solid line is the median. Whiskers extend to the 5 and 95

percentile.
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Figure A12: Uniform Climate Scenarios (+4◦C and +5◦C)
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Notes: Replication of Figure 2 in the main paper for a uniform +4◦C scenario in the top panel and a +5◦C

scenario in the bottom panel. Bars show aggregate impact on crop production in Africa in percent. The box

marks the 25-75 percentile range, while the inner solid line is the median. Whiskers extend to the 5 and 95

percentile.
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Figure A13: Uniform Climate Scenarios (+6◦C)
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Notes: Replication of Figure 2 in the main paper for a uniform +6◦C scenario. Bars show aggregate impact

on crop production in Africa in percent. The box marks the 25-75 percentile range, while the inner solid line

is the median. Whiskers extend to the 5 and 95 percentile.

4.6 Comparison Of Maize Impacts in Africa and the U.S.

We can compare the predicted impacts we obtained from the panel of maize yields in Africa
to the results obtained in the U.S. in [6]. The latter study had many more observations
and better weather data records. We hence use the results from the U.S. as a cross-check
by calculating predicted impacts in Africa in two ways: (1) The baseline degree days model
using the panel of country-level maize yields in Africa (fit differently to high-fertilizer and
low-fertilizer countries, see Section 2.2); (2) the same degree days model (degree days 10-
30◦C and degree days above 30◦C) estimated in a county-level panel of maize yields in the
eastern United States (east of the 100 degree meridian). The coefficients are then applied to
the countries in Africa. Table 4.6 gives the results of both models.

For the countries with high fertilizer use (South Africa and Zimbabwe), the predicted
impacts are roughly comparable if we use the coefficients from the African panel of yields or
the US panel of maize yields. For all other countries, the impacts seem to be less sensitive
towards higher temperature increases. This is line with the claim that crop varieties with
higher average yields (that are grown in areas that use more fertilizer and other inputs) are
also more susceptible to unfavorable weather conditions.
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Table A5: Comparing Regression Estimates for Maize in Africa and the U.S.
.

+1◦C +3◦C +5◦C
Country (1) (2) (1) (2) (1) (2)

Angola -9.70 -6.43 -25.94 -28.42 -38.49 -58.18
Botswana -8.90 -20.00 -23.79 -57.27 -35.38 -83.07
Benin -9.13 -20.85 -23.54 -66.43 -33.19 -93.44
Burundi -10.14 2.56 -27.33 4.52 -40.94 -3.68
Chad -8.06 -36.58 -21.00 -82.39 -30.39 -97.26
Congo -10.11 -1.43 -26.67 -21.59 -38.43 -65.85
Zaire -9.42 -14.67 -24.96 -49.43 -36.55 -80.45
Cameroon -9.65 -11.21 -25.72 -39.82 -37.92 -70.93
Central African Rep. -9.63 -11.39 -25.26 -46.52 -36.40 -82.14
Eritrea -8.53 -28.97 -22.42 -72.58 -32.89 -92.86
Ethiopia -9.85 -7.05 -26.35 -27.89 -39.27 -53.62
Gambia -8.68 -28.93 -22.16 -77.11 -30.93 -96.81
Gabon -10.15 -0.61 -26.67 -21.79 -38.08 -69.69
Ghana -9.68 -9.69 -25.13 -46.77 -35.32 -86.62
Guinea -9.85 -7.20 -26.16 -32.06 -38.13 -68.92
Ivory Coast -9.43 -15.68 -24.70 -54.29 -35.40 -87.06
Kenya -8.99 -22.23 -23.80 -62.30 -35.09 -87.25
Lesotho -9.22 -0.38 -25.53 -5.96 -38.96 -19.59
Madagascar -10.07 -0.37 -26.87 -11.61 -39.63 -42.77
Malawi -9.38 -13.79 -24.98 -46.02 -36.94 -75.34
Mali -8.86 -25.72 -23.08 -70.46 -33.17 -93.69
Mozambique -9.31 -15.23 -24.44 -53.44 -35.36 -85.20
Niger -7.47 -42.09 -19.66 -87.42 -28.87 -98.40
Nigeria -8.80 -26.66 -23.01 -71.02 -33.11 -93.81
Guinea-Bissau -9.35 -17.23 -24.34 -58.94 -34.16 -91.32
Rwanda -10.17 3.33 -27.50 9.92 -41.43 14.46
South Africa -14.64 -7.79 -43.72 -29.57 -68.67 -55.19
Senegal -8.70 -27.55 -22.37 -74.67 -31.57 -95.85
Sierra Leone -10.16 -0.33 -26.80 -18.69 -37.79 -72.20
Somalia -8.41 -32.25 -21.73 -78.87 -31.34 -96.17
Sudan -8.00 -35.62 -20.71 -81.55 -29.86 -97.01
Togo -9.31 -17.55 -24.08 -61.07 -34.04 -91.48
Tanzania -10.01 -0.40 -26.69 -12.42 -39.35 -43.56
Uganda -9.73 -6.37 -26.00 -26.66 -38.44 -56.94
Burkina Faso -8.50 -30.44 -22.29 -74.88 -32.25 -94.90
Namibia -8.92 -19.38 -23.93 -56.12 -35.75 -81.65
Swaziland -13.12 -5.68 -42.39 -27.10 -70.82 -57.96
Zambia -9.64 -8.58 -25.75 -32.98 -38.01 -64.28
Zimbabwe -18.98 -12.70 -54.12 -43.30 -80.44 -72.94

Notes: The table compares predicted impact on maize yields under various
uniform climate change scenarios. Columns labeled (1) use the country-level
panel of African yields to estimate the coefficients, columns labeled (2) use the
results for maize from the United States. Rows give the predicted mean impact
in percent.
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