Supplementary Information

Includes XLS files:

Filename	Description
Random Sample of 3000 Papers.xlsx	The randomly selected 3,000 records each graded manually with score and research category.
Initial Data With Random Order Added.xlsx	A full set of the original data used with a random number added to randomise order.
wordAnalysis-flagged.csv	The words that the software found to be predictive of a sceptical paper.
Studies predicted to be sceptical by manually selected predictive keywords.xlsx	All papers with predictive score based upon keywords with the first 1,000 graded manually.

Code and statistical calculations

We calculate the exact limits or Clopper-Pearson limits with a confidence level of 0.95 using the following R code:

```
require(MASS)
rm(list = setdiff(ls(), lsf.str()))
r_obs = 4 #number of sceptical papers found
n = 2718 #number of papers assessed
btest=binom.test(r_obs, n, p = 0.5, alternative = c("two.sided",
"less", "greater"),conf.level = 0.95)
pLow=btest$conf.int[1]
pLow
pHigh=btest$conf.int[2]
pHigh
# check these values
tail1=pbinom(r_obs,n,pHigh)
tail2=1-pbinom(r_obs,n,pLow) +dbinom(r_obs,n,pLow)
#These two tails both give tail areas as 0.025
tail1
tail2
#Convert pLow and pHigh to percentage of consensus papers
consensusPercentageLow = 100 * (1-pHigh)
consensusPercentageHigh = 100 * (1-pLow)
consensusPercentageLow
consensusPercentageHigh
```

Where:
r_obs
n

The observed number of sceptical papers in the sample.
The size of the sample, i.e., the total number of papers assessed.

pLow	The lower limit of the confidence interval the proportion of sceptical papers.
pHigh	The higher limit of the confidence interval of the proportion of sceptical papers.
consensusPercentageLow	A conversion of pHigh to show the lower limit of the confidence interval of consensus papers, expressed as a percentage.
consensusPercentageHigh	A conversion of pLow to show the lower limit of the confidence interval of consensus papers, expressed as a percentage.

Which returns the result:

```
> require(MASS)
> rm(list = setdiff(ls(), lsf.str()))
r_obs = 4 #number of sceptical papers found
n = 2718 #number of papers assessed
btest=binom.test(r_obs, n, p = 0.5, alternative = c("two.sided",
less", "greater"),conf.level = 0.95)
pLow=btest$conf.int [1]
pLow
[1] 0.0004011216
pHigh=btest$conf.int[2]
pHigh
1] 0.003763736
# check these values
taill=pbinom(r_obs,n,pHigh)
tail2=1-pbinom(r_obs,n,pLow) +dbinom(r_obs,n,pLow)
#These two tails both give tail areas as 0.025
tail1
1] 0.025
tail2
1] 0.025
#Convert pLow and pHigh to percentage of consensus papers
consensusPercentageLow = 100 * (1-pHigh)
consensusPercentageHigh = 100 * (1-pLow)
consensusPercentageLow
[1] 99.62363
consensusPercentageHigh
[1] 99.95989
```

Our estimate of the proportion of consensus papers was 1-(4/2718) $=99.85 \%$. The 95% confidence limits for this proportion are 99.62% to 99.96%, therefore it is likely that the proportion of climate papers that favour the consensus is at least 99.62%.

Repeating the above code at the 99.999% confidence level gives us the interval 99.212% to 99.996%, therefore it is almost guaranteed that the proportion of climate papers that favour the consensus is above 99.212%.

C13 excluded papers that did not implicitly or explicitly reject or agree with the consensus. We can re-run the R code excluding all papers categorised as 4 a with the following set up data:

```
n=3000-2104-4-43 #number of papers assessed
r_obs=4 #number of sceptical papers found
```

Using C13's categorisation we estimate the proportion of consensus papers to be 99.53% with the 95% confidence interval being 98.80% to 99.87%.

Keywords indicating scepticism

Using the list of categorised studies in the list from C13, we wrote software to extract all of the unique words from the titles, author list and extract of all the papers classified as 5, 6 and 7. We extracted a list of words that appeared in at least two of those papers, and then counted how many sceptical papers (endorsement categories $5,6 \& 7$) and how many non-sceptical papers (endorsement categories $1,2,3 \& 4$) they appeared in they appeared in.

The software then gave us a list of words in order of how predictive they were of a paper being sceptical. These words are listed in wordAnalysis-flagged.csv.

We then went through the first 150 words in this list, flagging those that we believed were just noise in the data (e.g. (e.g "walk" and "nearest") with an n flag in the "FlagNForIgnore" column, leaving in words such as "cosmic" and "rays". After the most likely 150 words, we set all to ignore.

We then wrote software to look through the 88,125 papers from Web of Science, using the predictive words to try to identify sceptical papers. Each paper was assigned a 50% likelihood of being sceptical, and the probability was adjusted with each word identified.

Obviously, as we were only looking at the words most predictive of scepticism and ignoring the words that predict non-scepticism, this probability could only realistically move in one direction. The probability figures are not meant to be genuine probabilities - but merely a number in which to order the papers from most to least likely to be sceptical. The studies ordered by this number are available in Studies predicted to be sceptical by manually selected predictive keywords.xlsx.

Supplementary Table 1

Title	Author	Journal	Year	Score	Research category
Impact of the geomagnetic field and solar radiation on climate change	Dergachev, V. A.; Vasiliev, S. S.; Raspopov, O. M.; Jungner, H .	GEOMAGNETIS M AND AERONOMY	2012	6	Paleoclima te
Solar activity imprints in tree ring-data from northwestern Russia	Kasatkina, Elena A.; Shumilov, Oleg, I; Timonen, Mauri	JOURNAL OF ATMOSPHERIC AND SOLAR- TERRESTRIAL PHYSICS	2019	5	Methods
Impacts of multi-scale solar activity on climate. Part II: Dominant timescales in decadal-centennial climate variability	Weng, Hengyi	ADVANCES IN ATMOSPHERIC SCIENCES	2012	5	Methods

A shared frequency set between the historical mid-latitude aurora records and the global surface temperature	Scafetta, Nicola	JOURNAL OF ATMOSPHERIC AND SOLARTERRESTRIAL PHYSICS	2012	7	Methods
Changes of space weather and space climate at Earth orbit: An update	Ahluwalia, H. S.	ADVANCES IN SPACE RESEARCH	2019	5	Methods
INFLUENCE OF SOLAR ACTIVITIES ON CLIMATE CHANGE	Anoruo, Chukwuma Moses; Okeke, Francisca Nneka	ENVIRONMENT AL ENGINEERING AND MANAGEMENT JOURNAL	2020	5	Methods
ACRIM total solar irradiance satellite composite validation versus TSI proxy models	Scafetta, Nicola; Willson, Richard C.	ASTROPHYSICS AND SPACE SCIENCE	2014	5	Methods
Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models	Scafetta, Nicola	JOURNAL OF ATMOSPHERIC AND SOLAR- TERRESTRIAL PHYSICS	2012	7	Methods
Evidence for cosmic ray modulation in temperature records from the South Atlantic Magnetic Anomaly region	Frigo, E.; Pacca, I. G.; Pereira-Filho, A. J.; Rampelloto, P. H.; Rigozo, N. R.	ANNALES GEOPHYSICAE	2013	5	Methods
COSMIC-RAY-DRIVEN REACTION AND GREENHOUSE EFFECT OF HALOGENATED MOLECULES: CULPRITS FOR ATMOSPHERIC OZONE DEPLETION and global Climate change	Lu, Q. -B.	INTERNATIONA L JOURNAL OF MODERN PHYSICS B	2013	5	Methods
Comparison of Decadal Trends among Total Solar Irradiance Composites of Satellite Observations	Scafetta, Nicola; Willson, Richard C.	ADVANCES IN ASTRONOMY	2019	5	Methods
The inter-annual distribution of cloudless days and nights in Abastumani: Coupling with cosmic factors and climate change	Didebulidze, G. G.; Todua, M.	JOURNAL OF ATMOSPHERIC AND SOLAR- TERRESTRIAL PHYSICS	2016	5	Methods
Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity Cosmic rays and space weather: effects on global climate change	Biktash, Lilia Dorman, L. I.	JOURNAL OF ADVANCED RESEARCH ANNALES GEOPHYSICAE	2017 2012	5 5	Methods Paleoclima te
Attribution analysis for the failure of CMIP5 climate models to simulate the recent global warming hiatus Study of the influence of solar variability on a regional (Indian) climate: 1901-2007	Wei Meng; Qiao FangLi Aslam, O. P. M.; Badruddin	SCIENCE CHINA- EARTH SCIENCES ADVANCES IN SPACE RESEARCH	2017 2014	6 5	Methods

Solar activity, cosmic rays, and earth temperature reconstructions for the past two millennia. Part 2. Analysis of the relation between the global temperature variations and natural processes
Solar Radiation Change and Climatic Effects on Decennial-Centennial Scales

Bicentennial decrease of the solar constant leads to the Earth's unbalanced heat budget and deep climate cooling
Possible Contribution of Variations in the Galactic Cosmic Ray Flux to the Global Temperature Rise in Recent Decades
Solar activity, cosmic rays, and earth temperature reconstructions for the past two millennia. Part 1. Analysis of temperature reconstructions Causality of global warming seen from observations: a scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere Problems of climate as a problem of optics

Examination of space-based bulk atmospheric temperatures used in climate research

Polynomial cointegration tests of anthropogenic impact on global warming Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection?

Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change

Multifractal detrended cross correlation analysis of Land-surface temperature anomalies and Soil radon concentration

Problem of the length of the current interglacial

Dergachev, V
A.
A.
GEOMAGNETIS
M AND

M AND
AERONOMY

Dergachev, V
A.; Volobuev,
D. M.

Abdusamatov,
Kh. I.
G.;

Veretenenko,
S. V.

Dergachev, V.
A.

Yang, Peicai;
Wang, Geli;
Zhang, Feng;
Zhou, Xiuji

Length of the current interglacial period and interglacial intervals of the last million years	Dergachev, V. A.	GEOMAGNETIS M AND AERONOMY	2015	5	Paleoclima te
Global surface temperature change analysis based on MODIS data in recent twelve years	Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.	ADVANCES IN SPACE RESEARCH	2017	5	Methods

