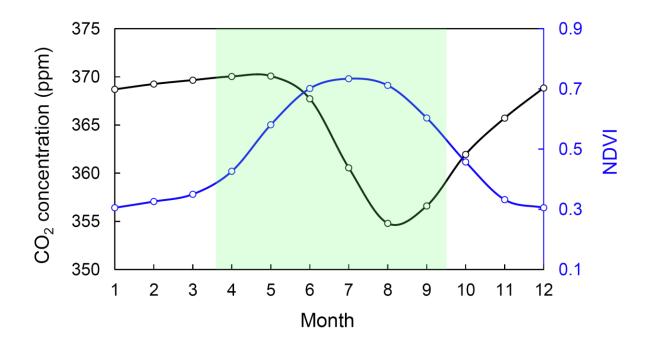
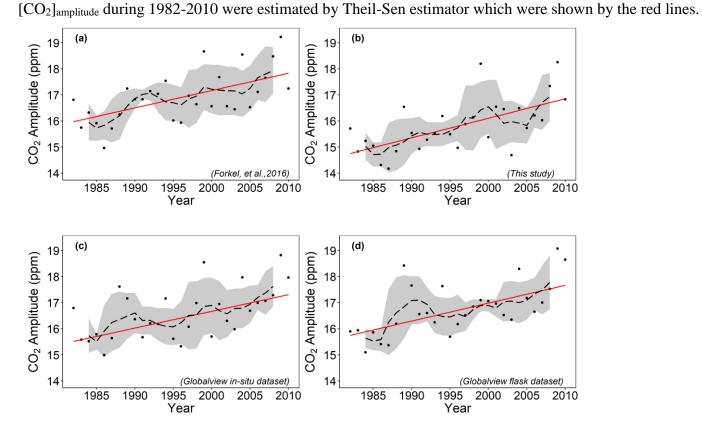
| 1        | Environmental Research Letters                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| 2        | Supplementary Information for                                                                                              |
| 3        | Non-uniform seasonal warming regulates vegetation greening and                                                             |
| 4        | atmospheric CO <sub>2</sub> amplification over northern lands                                                              |
| 5        |                                                                                                                            |
| 6        | Contents of this file                                                                                                      |
| 7        | Text S1                                                                                                                    |
| 8<br>9   | Figures S1 to S11<br>Tables S1 to S5                                                                                       |
| 9<br>10  | Introduction                                                                                                               |
|          |                                                                                                                            |
| 11<br>12 | <b>This</b> Supplemental Information <b>presents figures and tables supporting the document:</b><br>• Text S1. FLUXCOM TER |
| 13       | • Figure S1. Seasonal curves of atmospheric CO <sub>2</sub> concentration (black) and NDVI (blue) in                       |
| 14       | the northern lands (>50 $^{\circ}$ N).                                                                                     |
| 15       | • Figure S2. Temporal variations of the atmospheric [CO <sub>2</sub> ] <sub>amplitude</sub> collected from 4 processing    |
| 16       | methods                                                                                                                    |
| 17       | • Figure S3. Changes in temporal trends of atmospheric CO <sub>2</sub> amplitude and NDVI with 15-                         |
| 18       | year moving windows.                                                                                                       |
| 19       | • Figure S4. Changes in temporal trends of atmospheric CO <sub>2</sub> amplitude and NDVI with 20-                         |
| 20       | year moving windows.                                                                                                       |
| 21       | • Figure S5. Temporal variation of seasonal [CO2]amplitude, [CO2]min, [CO2]max, NDVI, GPP                                  |
| 22       | (MTE), growing season NEE in northern lands (>50 %) during 1982-2010.                                                      |
| 23       | • Figure S6. The correlation between NDVI and GSL in temporal and spatial scales.                                          |
| 24       | • Figure S7. Response of SOS and EOS to seasonal temperature in northern high latitude                                     |
| 25       | during 1982-2010.                                                                                                          |
| 26       | • Figure S8. The temporal dynamics of NDVI and phenological metrics in northern high                                       |
| 27       | latitudes during 1982-2010.                                                                                                |
| 28       | • Figure S9. The partial correlation coefficient (partial $r$ ) of NDVI and model GPP to spring                            |
| 29       | temperature                                                                                                                |
| 30       | • Figure S10. The partial correlation coefficient (partial $r$ ) of NDVI and model GPP to autumn                           |
| 31       | temperature                                                                                                                |
|          |                                                                                                                            |

- Figure S11. The trends of seasonal respiration over northern lands (>50 %) during the whole
- studied periods (1982-2010) and the special periods (1993-2007).
- Table S1. Information of the ensemble terrestrial ecosystem models
- Table S2. The 10-year moving trend of [CO<sub>2</sub>]<sub>amplitude</sub>, [CO<sub>2</sub>]<sub>max</sub> and [CO<sub>2</sub>]<sub>min</sub> at BRW over
  1982-2010.
- Table S3. The 15-year moving trend of [CO<sub>2</sub>]<sub>amplitude</sub>, [CO<sub>2</sub>]<sub>max</sub> and [CO<sub>2</sub>]<sub>min</sub> at BRW over 1982-2010.
- Table S4. The changing trends of seasonal temperature from 1982 to 2010 across 15-year
  intervals.
- Table S5. The changing trends of GSL, SOS and EOS during 1982-2010 by 15-year intervals.
- 42


21 pages (including cover page)

## 44 Text S1 FLUXCOM TER.


45 The FLUXCOM TER were up scaled from FLUXNET-based in situ carbon flux estimates (Reichstein et al., 2005, Lasslop et al., 2010) using three machine learning algorithms (Papale and Valentini 2003), 46 artificial neural networks (ANNs, Papale and Valentini 2003), random forest (RF, Tramontana et al., 47 2015) and model trees ensemble (MTE, Jung et al., 2011). To upscale the data, gridded meteorological 48 49 measurements (e.g. daily air temperature, water availability and radiation) and satellite data were used 50 to train the three models. In processing the global gridded products, two partitioning methods (Reichstein et al., 2005, Lasslop et al., 2010) of carbon flux estimates were used. Combining with 51 these three fitting algorithms, it provided six sets of GPP and TER estimates each (Jung et al., 2017), 52 which could be accessed from the Data Portal of the Max Planck Institute for the Biogeochemistry 53 54 (https://www.bgc-jena.mpg.de/geodb/projects/Home.php). The daily TER of all ensemble means 55 were used to produce growing season and non-growing season TER to calculate the changed rates during 1993-2007 comparing the period of 1982-2010 in figure S9. The trends of seasonal respiration 56 were first calculated at each grid with Theil-Sen estimator, then the gridded trend were averaged to 57 58 regional levels. And the difference between 1982-2010 and 1993-2007 were estimated by One-way ANOVA. 59

60

Figure S1. Seasonal curves of atmospheric CO<sub>2</sub> concentration (black) and NDVI (blue) in the northern
lands (>50 %). The monthly values are calculated as the 29-year average across 1982 to 2010. The green
shade area marks the growing season averaging from 1982-2010.



**Figure S2.** Temporal variations of the atmospheric  $[CO_2]_{amplitude}$  calculating by four different processing methods (see section 2.1). In each panel, the disperse dots showed the anomalies of each metrics, the dashed black line with the grey shade areas indicated the 5-year dynamics (mean ±1 S.D.). The long-term trends of  $[CO_2]_{amplitude}$  during 1982-2010 were estimated by Theil-Sen estimator which were shown by the red lines.



71 72

Figure S3. Changes in temporal trends of atmospheric CO<sub>2</sub> amplitude and plant greenness
(NDVI). 15-year moving window from 1982 to 2010 show the changing trends of (a) annual
amplitude ([CO<sub>2</sub>]<sub>amplitude</sub>), minimum ([CO<sub>2</sub>]<sub>min</sub>) and maximum ([CO<sub>2</sub>]<sub>max</sub>) of atmospheric CO<sub>2</sub>
concentration ([CO<sub>2</sub>]) recorded from Point Barrow (BRW); (b) NDVI and growing season
length (GSL). Because decreased [CO<sub>2</sub>]<sub>min</sub> contributes positive effect on enhanced [CO<sub>2</sub>]<sub>amplitude</sub>,
we show the subtractive [CO<sub>2</sub>]<sub>min</sub> trends in panel (a).

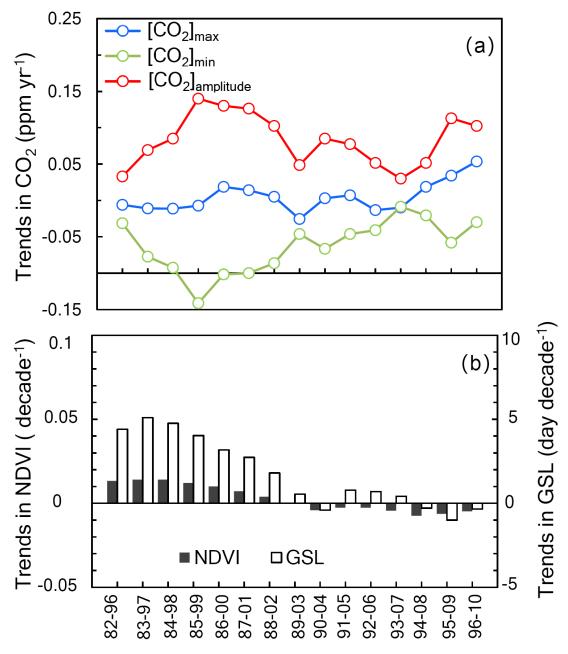



Figure S4. Changes in temporal trends of atmospheric CO<sub>2</sub> amplitude and plant greenness
(NDVI). 20-year moving windows from 1982 to 2010 show the changing trends of (a) annual
amplitude ([CO<sub>2</sub>]<sub>amplitude</sub>), minimum ([CO<sub>2</sub>]<sub>min</sub>) and maximum ([CO<sub>2</sub>]<sub>max</sub>) of atmospheric
CO<sub>2</sub> concentration ([CO<sub>2</sub>]) recorded from Point Barrow (BRW); (b) NDVI and growing
season length (GSL). Because decreased [CO<sub>2</sub>]<sub>min</sub> contributes positive effect on enhanced
[CO<sub>2</sub>]<sub>amplitude</sub>, we show the subtractive [CO<sub>2</sub>]<sub>min</sub> trends in panel (a).

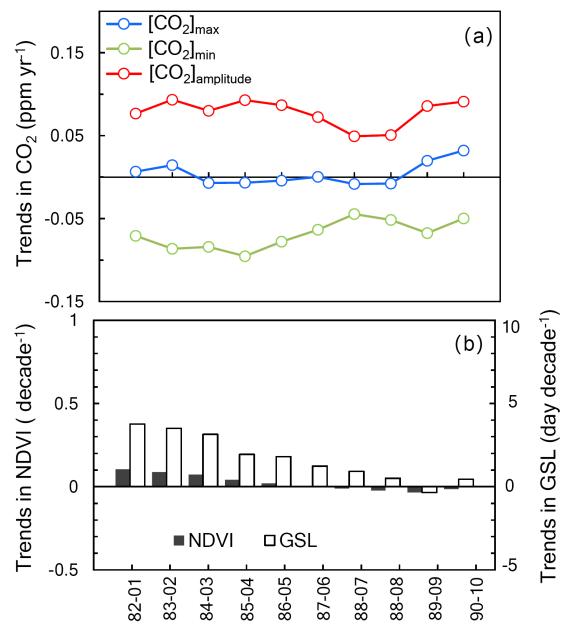
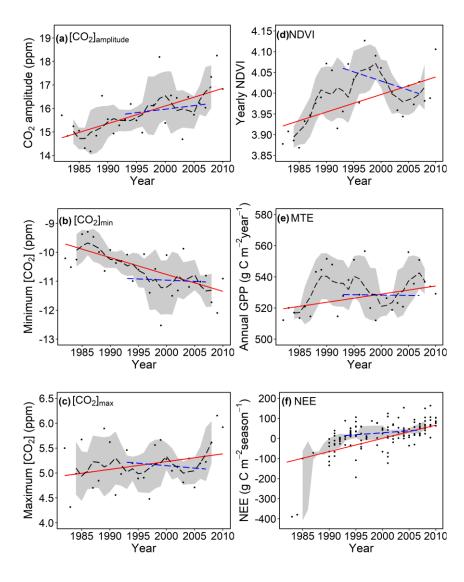
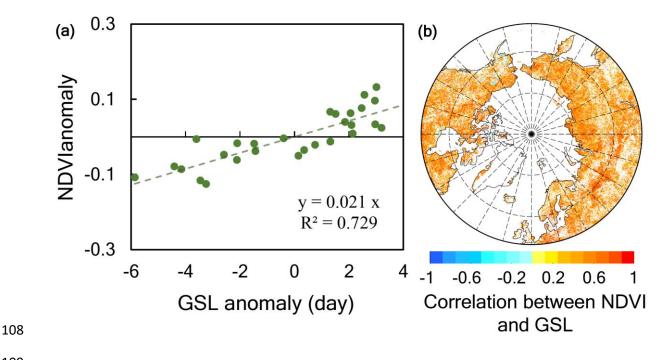
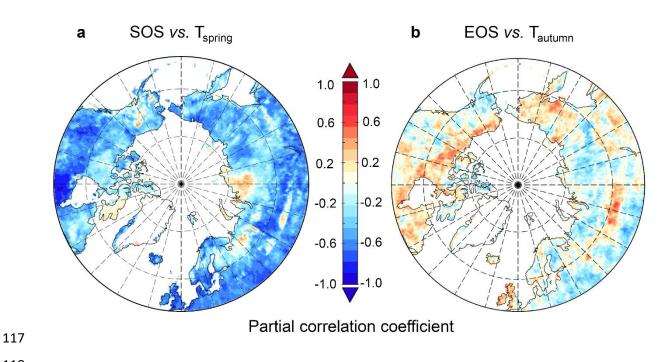





Figure S5. Temporal variation of (a) atmospheric [CO<sub>2</sub>]<sub>amplitude</sub>; (b) [CO<sub>2</sub>]<sub>min</sub>; (c) [CO<sub>2</sub>]<sub>max</sub> at 90 BRW; (d) NDVI; (e) GPP (MTE); (f) growing season NEE; in northern lands (>50 %); over 91 92 1982-2010. In each panel, the disperse dots showed the anomalies of each metrics, the dashed black line with the grey shade areas indicated the 5-year dynamics (mean±1 S.D.). The 93 changing trends of each metrics during 1982-2010 and 1993-2007 were estimated by Theil-94 Sen estimator which were respectively shown by red and blue lines. The NEE data were 95 extracted from the ref (Belshe et al., 2013), which collected observational data on CO<sub>2</sub> flux 96 97 from 52 studies spanning 32 sites across tundra areas (northern 50 %) from 1982 to 2010.We selected the site-year flux measurements for growing season (Note that the positive values 98 99 mean CO<sub>2</sub> uptake).



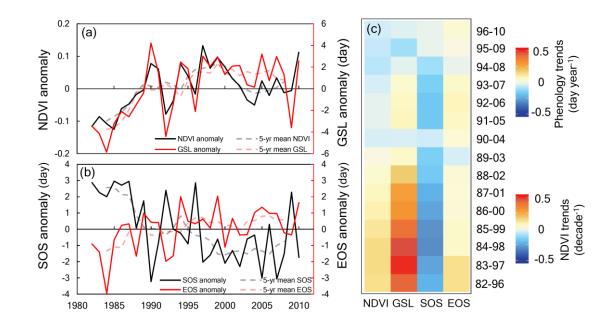
100


**Figure S6.** The correlation between NDVI and GSL in temporal and spatial scales. (a), The linear correlation between the average NDVI and GSL anomalies across northern lands (>50 °N), from 1982 to 2010 ( $R^2 = 0.80$ , P < 0.001). (b), Spatial distribution of the correlation coefficient (*r*) between NDVI and GSL anomalies over 1982–2010 (if the *P* value for a grid cell was >0.1, we determined that the correlation was insignificant and set its coefficient as zero).



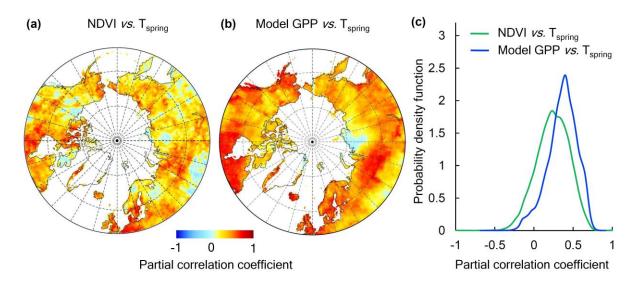
109

Figure S7. Response of SOS and EOS to seasonal temperature in northern high latitude during 1982-2010. Partial correlation coefficients between (a), SOS and spring temperature (b), EOS and autumn temperature during 1982-2010. Note that the negative partial correlation coefficients in panel (a) represent that warmer spring advances the start of growing season, and the positive coefficients in panel (b) means the delayed end of growing season with warmer autumn.


116



118


Figure S8. The temporal dynamics of NDVI and phenological metrics in northern high latitudes during 1982-2010. The broken and dashed lines showed the anomalies and 5-year moving means of (a), NDVI and GSL; (b), SOS and EOS. The colors linked *Y*-axis with respective metrics. The 15-year moving trends of each metric were shown in panel (c). Note that the temporal variation and changing rates of NDVI is magnified 10 times to arrive at the same magnitude of GSL, SOS and EOS.

126



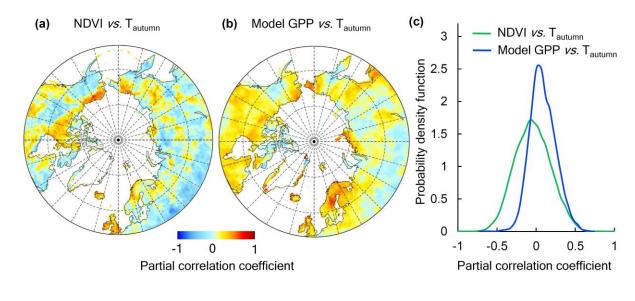

127

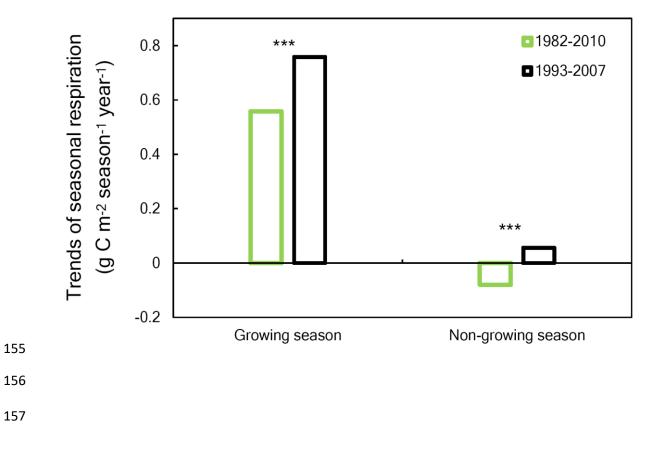
Figure S9. The partial correlation coefficient (partial r) of NDVI and model GPP to spring temperature over northern lands (>50 %) during 1982-2010. The spatial maps of (a) the partial r between NDVI and spring temperature; and (b) the partial r between model GPP and spring temperature averaging from the five terrestrial models. The pdfs of partial r between NDVI and spring temperature (green line) and the partial r between model GPP and spring temperature (blue line).



135

Figure S10. The partial correlation coefficient (partial *r*) of NDVI and model GPP to autumn temperature over northern lands (>50 %) during 1982-2010. The spatial maps of (a) the partial *r* between NDVI and autumn temperature; and (b) the partial r between model GPP and autumn temperature averaging from the five terrestrial models. The pdfs of partial r between NDVI and autumn temperature (green line) and the partial r between model GPP and autumn temperature (blue line).




144

137

145 146

13/21

147Figure S11. The trends of seasonal respiration over northern lands (>50 %) during the whole148studied periods (1982-2010) and the special periods (1993-2007). FLUXCOM daily respiration149was used here to calculate growing-season and non-growing season respiration following the150NDVI determined growing-season length (see Text S1). The green bins showed the linear151trends of respiration in growing-season and non-growing season over the period of 1982-2010.152And the bins with black represented the trends of seasonal respiration during 1996-2010.153\*\*\*Significant difference at P < 0.01.



| Model    | Reference                                  | Time interval | Phenology module                              | Phenology determination                                      |
|----------|--------------------------------------------|---------------|-----------------------------------------------|--------------------------------------------------------------|
| ORCHIDEE | Krinner et al., 2005                       | 1982-2009     | STOMATE(Ball et al.,1987)                     | Warmth and/or moisture stres<br>criteria(depend on the PFT)  |
| CLM4.5   | Oleson et al., 2013;<br>Koven et al., 2013 | 1982-2005     | GDD (White et al.,<br>1997)                   | cold and drought stress                                      |
| CoLM     | Dai et al., 2003;<br>Ji et al. 2014        | 1982-2006     | Adapted from Kucharik<br>et al. 2000          | Warmth and/or moisture stres<br>criteria (depend on the PFT) |
| Uvic     | H. D. Matthews et al.,2004                 | 1982-2009     | Climate coupled<br>TRIFFID [Cox PM<br>(1999)] | Temperature-dependent leaf<br>turnover rate                  |
| TEM6     | Euckirchen et<br>al.,2006                  | 1982-2009     | STM(Zhuang et<br>al.,2001;<br>Goodrich,1976)  | The length of the annual non-<br>frozen period               |

**Table S1.** Information of the ensemble terrestrial ecosystem models.

|           | [CO2]amplitude (ppm year <sup>-1</sup> ) |       | [CO <sub>2</sub> ] <sub>max</sub> (ppm year <sup>-1</sup> ) |       | [CO <sub>2</sub> ] <sub>min</sub> (ppm year <sup>-1</sup> ) |       |
|-----------|------------------------------------------|-------|-------------------------------------------------------------|-------|-------------------------------------------------------------|-------|
|           | Coefficient                              | Р     | Coefficient                                                 | Р     | Coefficient                                                 | Р     |
| 1982-1991 | -0.020                                   | 1.000 | 0.015                                                       | 1.000 | -0.018                                                      | 0.858 |
| 1983-1992 | 0.050                                    | 0.371 | 0.030                                                       | 0.858 | -0.047                                                      | 0.592 |
| 1984-1993 | 0.061                                    | 0.323 | -0.006                                                      | 0.858 | -0.088                                                      | 0.210 |
| 1985-1994 | 0.163                                    | 0.088 | -0.011                                                      | 0.858 | -0.166                                                      | 0.020 |
| 1986-1995 | 0.163                                    | 0.088 | 0.006                                                       | 1.000 | -0.145                                                      | 0.032 |
| 1987-1996 | 0.089                                    | 0.419 | 0.006                                                       | 1.000 | -0.070                                                      | 0.283 |
| 1988-1997 | 0.030                                    | 0.653 | -0.106                                                      | 0.210 | -0.076                                                      | 0.283 |
| 1989-1998 | 0.008                                    | 0.928 | -0.106                                                      | 0.210 | -0.053                                                      | 0.592 |
| 1990-1999 | 0.158                                    | 0.088 | 0.014                                                       | 0.858 | -0.171                                                      | 0.074 |
| 1991-2000 | 0.140                                    | 0.152 | 0.078                                                       | 0.283 | -0.046                                                      | 0.592 |
| 1992-2001 | 0.126                                    | 0.210 | 0.014                                                       | 0.721 | -0.100                                                      | 0.283 |
| 1993-2002 | 0.114                                    | 0.283 | 0.014                                                       | 1.000 | -0.103                                                      | 0.283 |
| 1994-2003 | 0.032                                    | 1.000 | -0.008                                                      | 1.000 | 0.016                                                       | 0.858 |
| 1995-2004 | 0.103                                    | 0.474 | 0.028                                                       | 0.592 | 0.008                                                       | 1.000 |
| 1996-2005 | 0.058                                    | 0.858 | -0.045                                                      | 0.721 | 0.027                                                       | 0.858 |
| 1997-2006 | -0.020                                   | 0.858 | -0.048                                                      | 0.592 | 0.074                                                       | 0.283 |
| 1998-2007 | -0.068                                   | 0.474 | -0.051                                                      | 0.210 | 0.098                                                       | 0.371 |
| 1999-2008 | -0.060                                   | 0.858 | -0.006                                                      | 1.000 | 0.089                                                       | 0.474 |
| 2000-2009 | 0.213                                    | 0.210 | 0.081                                                       | 0.152 | -0.111                                                      | 0.474 |
| 2001-2010 | 0.150                                    | 0.283 | 0.103                                                       | 0.020 | 0.022                                                       | 0.858 |

Table S2 The 10-year moving trend of [CO<sub>2</sub>]<sub>amplitude</sub>, [CO<sub>2</sub>]<sub>max</sub> and [CO<sub>2</sub>]<sub>min</sub> at BRW over 19822010.

|           | [CO2]amplitude (ppm year <sup>-1</sup> ) |       | [CO <sub>2</sub> ] <sub>max</sub> (ppm year <sup>-1</sup> ) |       | [CO <sub>2</sub> ] <sub>min</sub> (ppm year <sup>-1</sup> ) |       |
|-----------|------------------------------------------|-------|-------------------------------------------------------------|-------|-------------------------------------------------------------|-------|
|           | Coefficient                              | Р     | Coefficient                                                 | Р     | Coefficient                                                 | Р     |
| 1982-1996 | 0.033                                    | 0.400 | -0.006                                                      | 0.843 | -0.031                                                      | 0.276 |
| 1983-1997 | 0.069                                    | 0.067 | -0.011                                                      | 0.692 | -0.077                                                      | 0.075 |
| 1984-1998 | 0.085                                    | 0.067 | -0.011                                                      | 0.488 | -0.092                                                      | 0.018 |
| 1985-1999 | 0.140                                    | 0.015 | -0.007                                                      | 0.843 | -0.141                                                      | 0.002 |
| 1986-2000 | 0.130                                    | 0.033 | 0.019                                                       | 0.621 | -0.102                                                      | 0.018 |
| 1987-2001 | 0.126                                    | 0.033 | 0.014                                                       | 0.621 | -0.100                                                      | 0.023 |
| 1988-2002 | 0.103                                    | 0.067 | 0.005                                                       | 1.000 | -0.086                                                      | 0.048 |
| 1989-2003 | 0.049                                    | 0.656 | -0.026                                                      | 0.373 | -0.046                                                      | 0.488 |
| 1990-2004 | 0.085                                    | 0.151 | 0.003                                                       | 1.000 | -0.066                                                      | 0.235 |
| 1991-2005 | 0.077                                    | 0.166 | 0.007                                                       | 0.921 | -0.046                                                      | 0.428 |
| 1992-2006 | 0.052                                    | 0.276 | -0.013                                                      | 0.767 | -0.041                                                      | 0.488 |
| 1993-2007 | 0.030                                    | 0.553 | -0.010                                                      | 0.767 | -0.009                                                      | 0.767 |
| 1994-2008 | 0.051                                    | 0.373 | 0.019                                                       | 0.488 | -0.020                                                      | 0.692 |
| 1995-2009 | 0.113                                    | 0.092 | 0.034                                                       | 0.138 | -0.058                                                      | 0.373 |
| 1996-2010 | 0.103                                    | 0.092 | 0.054                                                       | 0.092 | -0.030                                                      | 0.692 |

Table S3. The 15-year moving trend of [CO<sub>2</sub>]<sub>amplitude</sub>, [CO<sub>2</sub>]<sub>max</sub> and [CO<sub>2</sub>]<sub>min</sub> at BRW over 19822010.

|           | <b>Spring</b> (°C year <sup>-1</sup> ) |       | Summer(°    | <b>Summer</b> (°C year <sup>-1</sup> ) |             | Autumn(°C year <sup>-1</sup> ) |             | year-1) |
|-----------|----------------------------------------|-------|-------------|----------------------------------------|-------------|--------------------------------|-------------|---------|
|           | Coefficient                            | Р     | Coefficient | Р                                      | Coefficient | Р                              | Coefficient | Р       |
| 1982-1996 | 0.114                                  | 0.029 | 0.032       | 0.166                                  | 0.000       | 1.000                          | 0.044       | 0.553   |
| 1983-1997 | 0.114                                  | 0.013 | 0.033       | 0.166                                  | 0.037       | 0.428                          | 0.069       | 0.198   |
| 1984-1998 | 0.117                                  | 0.013 | 0.027       | 0.276                                  | 0.011       | 0.767                          | 0.047       | 0.428   |
| 1985-1999 | 0.116                                  | 0.013 | 0.049       | 0.113                                  | 0.044       | 0.488                          | 0.066       | 0.235   |
| 1986-2000 | 0.087                                  | 0.092 | 0.043       | 0.166                                  | 0.044       | 0.553                          | 0.067       | 0.235   |
| 1987-2001 | 0.072                                  | 0.138 | 0.036       | 0.276                                  | 0.043       | 0.553                          | 0.051       | 0.428   |
| 1988-2002 | 0.049                                  | 0.322 | 0.031       | 0.276                                  | 0.065       | 0.322                          | 0.047       | 0.428   |
| 1989-2003 | 0.012                                  | 0.692 | 0.024       | 0.322                                  | 0.044       | 0.276                          | 0.044       | 0.488   |
| 1990-2004 | 0.008                                  | 0.767 | 0.041       | 0.092                                  | 0.098       | 0.029                          | 0.051       | 0.166   |
| 1991-2005 | -0.048                                 | 0.553 | 0.034       | 0.198                                  | 0.101       | 0.013                          | 0.048       | 0.322   |
| 1992-2006 | 0.020                                  | 0.488 | 0.049       | 0.060                                  | 0.108       | 0.010                          | 0.046       | 0.373   |
| 1993-2007 | 0.009                                  | 0.692 | 0.061       | 0.023                                  | 0.108       | 0.013                          | -0.010      | 0.921   |
| 1994-2008 | -0.006                                 | 0.921 | 0.038       | 0.092                                  | 0.074       | 0.138                          | 0.039       | 0.621   |
| 1995-2009 | -0.027                                 | 0.621 | 0.020       | 0.373                                  | 0.014       | 0.843                          | 0.079       | 0.138   |
| 1996-2010 | -0.033                                 | 0.322 | 0.018       | 0.488                                  | 0.023       | 0.553                          | 0.018       | 0.767   |

**Table S4.** The changing trends of seasonal temperature from 1982 to 2010 across 15-year
intervals (the linear regression results in Figure 3 c).

|           | <b>GSL</b> (day year <sup>-1</sup> ) |       | SOS(day y   | /ear <sup>-1</sup> ) | EOS(day year <sup>-1</sup> ) |       |  |
|-----------|--------------------------------------|-------|-------------|----------------------|------------------------------|-------|--|
|           | Coefficient                          | Р     | Coefficient | Р                    | Coefficient                  | Р     |  |
| 1982-1996 | 0.441                                | 0.013 | -0.228      | 0.060                | 0.134                        | 0.060 |  |
| 1983-1997 | 0.510                                | 0.008 | -0.257      | 0.048                | 0.134                        | 0.048 |  |
| 1984-1998 | 0.476                                | 0.010 | -0.304      | 0.023                | 0.055                        | 0.023 |  |
| 1985-1999 | 0.403                                | 0.018 | -0.293      | 0.023                | 0.049                        | 0.023 |  |
| 1986-2000 | 0.317                                | 0.075 | -0.256      | 0.029                | 0.020                        | 0.029 |  |
| 1987-2001 | 0.273                                | 0.113 | -0.231      | 0.048                | 0.024                        | 0.048 |  |
| 1988-2002 | 0.180                                | 0.198 | -0.170      | 0.060                | 0.019                        | 0.060 |  |
| 1989-2003 | 0.054                                | 0.621 | -0.152      | 0.198                | -0.044                       | 0.198 |  |
| 1990-2004 | -0.041                               | 0.843 | -0.052      | 0.621                | 0.026                        | 0.621 |  |
| 1991-2005 | 0.079                                | 0.276 | -0.176      | 0.060                | 0.068                        | 0.060 |  |
| 1992-2006 | 0.069                                | 0.428 | -0.176      | 0.166                | 0.087                        | 0.166 |  |
| 1993-2007 | 0.041                                | 0.553 | -0.152      | 0.138                | 0.057                        | 0.138 |  |
| 1994-2008 | -0.029                               | 0.921 | -0.102      | 0.276                | -0.021                       | 0.276 |  |
| 1995-2009 | -0.100                               | 0.621 | -0.023      | 1.000                | -0.003                       | 1.000 |  |
| 1996-2010 | -0.034                               | 0.843 | -0.023      | 0.921                | 0.034                        | 0.921 |  |

Table S5. The changing trends of GSL, SOS and EOS during 1982-2010 by 15-year intervals
(the linear regression results in Figure S7).

## 173 **References**

- its contribution to the control of photosynthesis under different environmental conditions.
- 176 In Progress in photosynthesis research 221-224.
- 177 Cox, P. et al. (1999) The impact of new land surface physics on the GCM simulation of climate
- and climate sensitivity. Clim Dynam **15**, 183-203.

<sup>174</sup> Ball, J. T., Woodrow, I. E. & Berry, J. A. (1987) A model predicting stomatal conductance and

| 179 | Dai, Y. et al. (2003) The Common Land Model. B Am Meteorol Soc 84, 1013-1023.                  |
|-----|------------------------------------------------------------------------------------------------|
| 180 | Goodrich, L. E. (1976) A numerical model for assessing the influence of snow cover on the      |
| 181 | ground thermal regime. PhD thesis, McGill University, Montreal. Canada, 410.                   |
| 182 | Jung, M., M. Reichstein, H. A. Margolis, et al. (2011) Global patterns of land-atmosphere      |
| 183 | fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,         |
| 184 | satellite, and meteorological observations. J. Geophys Res 116,001566.                         |
| 185 | Jung, M., M. Reichstein, C. R. Schwalm, et al. (2017) Compensatory water effects link yearly   |
| 186 | global land CO <sub>2</sub> sink changes to temperature. <i>Nature</i> <b>541</b> , 516-520.   |
| 187 | Koven, C. D., Riley, W. J. & Stern, A. (2013) Analysis of Permafrost Thermal Dynamics and      |
| 188 | Response to Climate Change in the CMIP5 Earth System Models. J. Climate 26, 1877-              |
| 189 | 1900.                                                                                          |
| 190 | Kucharik, C. J. et al. (2000) Testing the performance of a dynamic global ecosystem model:     |
| 191 | Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cy 14, 795-        |
| 192 | 825.                                                                                           |
| 193 | Lasslop, G., M. Reichstein, D. Papale, et al. (2010) Separation of net ecosystem exchange into |
| 194 | assimilation and respiration using a light response curve approach: critical issues and        |
| 195 | global evaluation. Global Change Biol 16, 187-208.                                             |
| 196 | Oleson, K. W. et al. (2010) Technical description of version 4.0 of the Community Land Model   |
|     |                                                                                                |

- 197 (CLM). NCAR Tech[R]. Note NCAR/TN-4781STR, 25.
- 198 Papale, D., and R. Valentini. (2003). A new assessment of European forests carbon exchanges
- by eddy fluxes and artificial neural network spatialization. *Global Change Biol* **9**, 525-535.
- 200 Reichstein, M., E. Falge, D. Baldocchi, et al. (2005) On the separation of net ecosystem

- exchange into assimilation and ecosystem respiration: review and improved algorithm.
   *Global Change Biol* 11, 1424-1439.
- Taylor, K. E., R. J. Stouffer, and G. A. Meehl. (2012) An Overview of CMIP5 and the
  Experiment Design. *B Am Meteorol Soc* 93, 485-498.
- 205 Tramontana, G., K. Ichii, G. Camps-Valls, E. Tomelleri, and D. Papale. (2015). Uncertainty
- analysis of gross primary production upscaling using Random Forests, remote sensing and
  eddy covariance data. *Remote Sens Environ* 168, 360-373.
- 208 Tramontana, G., M. Jung, C. R. Schwalm, et al. (2016) Predicting carbon dioxide and energy
- fluxes across global FLUXNET sites with regression algorithms. *Biogeosciences* **13**, 4291-
- **210 4313**.
- Van Vuuren, D. P., J. Edmonds, M. Kainuma, et al. (2011) The representative concentration
  pathways: an overview. *Climatic Change* 109, 5-31.
- 213 Zhuang, Q., Romanovsky, V. E. & McGuire, A. D. (2001) Incorporation of a permafrost model
- into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in
- simulating soil thermal dynamics. J. Geophys Res: Atmospheres 106, 33649-33670.