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Supplementary Methods 

Calculation of snowmelt and rainfall runoff 

We focus our analysis on the six months of boreal spring and summer for two 

reasons. First, in the NH, boreal spring and summer are when water demands are highest 

(Hoekstra et al. 2012). Second, because the snow season length varies by altitude and 

latitude, it is necessary to capture a large calendar window of NH snowmelt (Mankin & 

Diffenbaugh 2014). Glacial contributions are relatively small at the basin scales that we 

consider, with the exception of very dry regions, such as the Aral and Syr Darya basins 

(Kaser et al. 2010; Viviroli et al. 2011). We therefore do not consider glacial melt in this 

analysis. 

Snowmelt runoff (surface and subsurface) is not standard output from most 

coordinated climate model experiments. Instead, the land surface components in climate 

models often provide the snowmelt rate. Typically, snowmelt runoff is estimated as some 

function of temperature and elevation (Viviroli et al. 2007), while high-resolution daily-

scale snowmelt runoff estimates can be estimated with a snowmelt runoff model (SRM), 

forced with observations or a climate model (Ashfaq et al. 2010; Rauscher et al. 2008; 

Immerzeel et al. 2010). However, because of the computational cost to provide a large 

number of simulations with an SRM and the coarse temporal and spatial scales we 

analyze, we estimate snowmelt runoff directly from the monthly values of snowmelt rate 

fields from 49 ensemble members at the basin-scale.  

At each grid-point for each ensemble member, we estimate a “snow runoff 

coefficient” in a manner similar to the calculation made by an SRM (Martinec et al. 

2008). We use the ratio of grid-scale snowmelt flux to rainfall flux to estimate the 
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coefficient, which approximates the ratio of snowmelt runoff (         ) to rainfall runoff 

(     ), : 

         

     

 
             

             
   

We interpret total runoff as the basin-scale precipitation that does not evaporate. We 

therefore do not distinguish the different runoff pathways (surface versus subsurface) 

such runoff takes. Thus total runoff is the sum of runoff from rainfall and from snowmelt, 

(                      ), the above relation above gives, 

                       

Therefore, rainfall runoff can be calculated as 

      
      

     
 

and snowmelt runoff can be calculated as 

                        

 

Details of the CMIP5 and LENS climate simulations 

Analysis of snowmelt contributions to total runoff requires fields from either 

land-ice or land surface models, limiting our analysis to 19 CMIP5 models (Table S1). 

To ensure that the CMIP5 fields can be readily compared within each basin, we 

interpolate all CMIP5 models to 1°×1° in the horizontal via a patch recovery method (Gu 

et al. 2004). 

Both CMIP5 and LENS are run using observed greenhouse gas concentrations 

over the historical period and the RCP8.5 forcing pathway (Riahi et al. 2011) over the 21
st
 

century. RCP8.5 prescribes an additional 8.5 W m-2
 of radiative forcing over the pre-

industrial radiative balance (~1370 CO
2
-equivelent) by 2100 (Moss et al. 2010). CMIP5 
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shows a median global mean warming of ~3.5 C by 2080 (Rogelj et al. 2012) (relative to 

the late-20
th
 century baseline). Some CMIP5 GCMs also include upper atmospheric 

dynamics, interactive carbon cycle, and land vegetation (Taylor et al. 2012; Flato et al. 

2013). 

 

Variables used in GLDAS reanalysis and the CMIP5 and CESM LENS simulations 

From the GLDAS, we use the sum of monthly surface and subsurface runoff (Qs 

+ Qsb), snowmelt rate (Qsm), and rainfall rate (Rainf) to calculate snowmelt runoff 

(Q
snowmelt

) and unmet demand. From CMIP5, we use precipitation (pr) and snowfall flux 

(prsn) to estimate the rainfall rate, and total runoff (mrro) and snowmelt (snm) to 

estimate snowmelt runoff and rainfall runoff. From LENS, we use the sum of surface and 

subsurface runoffs (QRGWL, QDRAI, and QOVER), as well as snowmelt 

(QSNOMELT) and the rainfall rate (RAIN).   
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Supplementary table 

 

 

Table S1 Models used from the CMIP5 ensemble. 

 

 

Supplementary figure 

 

Fig. S1 Present and future March-August snow resource potential. a, 1955-2005 mean 

snowmelt to unmet demand ratio (same as Fig. 1e). b, The CMIP5 ensemble mean 2060 

projection. c, The LENS ensemble mean 2060 projection. Stippled basins in [b] and [c] 

indicate where the ensemble mean is less than 1 SD of the ensemble variability. Note that 

grey basins in Fig. 2a and b have their snowmelt supply potentials shown here. 

 

 Model Name 

1 CCSM4 

2 CESM1-BGC 

3 CESM1-CAM5 

4 CESM1-WACCM 

5 CMCC-CMS 

6 CanESM2 

7 GFDL-ESM2G 

8 GFDL-ESM2M 

9 GISS-E2-H-CC 

10 GISS-E2-R 

11 GISS-E2-R-CC 

12 MIROC-ESM 

13 MIROC-ESM-CHEM 

14 MIROC5 

15 MPI-ESM-LR 

16 MPI-ESM-MR 

17 bcc-csm1-1 

18 bcc-csm1-1-m 

19 inmcm4 


