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Supplementary Results 

Source Localization 
Compound action potentials (CAPs) were elicited on the Tibial and Peroneal branches of the 
Sciatic nerve in Rabbit, as described in the methods.  The Transformation matrix was applied to 
the peak of these CAPs, resulting in an estimate of the location of the activity within the nerve 
cross-section for each source.  Figure S1 presents these estimates overlayed onto nerve histology 
from each experiment in a diagram of the cuff.  The signals overlay the approximate location of 
each fascicle group.  Histological sections of the branches were used to verify that, in every case, 
the fascicles covered by the estimate were part of the branch stimulated. 

 

 
Figure S1: Localization of Sources.  These images show the locations estimated using the beamforming 
algorithm, with nerve histology overlayed and a schematic of the cuff, for reference.  The tibial branch signals 
are in red, while peroneal branch signals are in green – in every case they overlap the correct group of fascicles.  
Note that the position of the nerve histology within the cuff is approximate.  

 



Synchronous Evoked Activity 
130Hz sinusoidal stimulation applied to each fascicle was found to elicit CAP-like discharges 
from the nerve superimposed on the artifact (Figure S2A). Since the artifact was sinusoidal, it 
could easily be removed using notch or high-pass filters by a minimum of 100dB as shown in 
Figure S2B.  These signals increased in amplitude and complexity with increasing stimulation 
amplitude and had a signal to noise ratio of 22±5 dB calculated using the peak-to-peak 
amplitudes of the signal and noise.  When this same stimulation is applied after the nerve has 
been ligated or severed, no signal above noise baseline is recorded.  Similarly, this activity is 
observed long after the associated muscles have fatigued, confirming its neural origin. 

 

Effect of Contact Density and Position on Signal Recovery 
In order to determine the role of contact density the above experiments were repeated with 8 
instead of 16 contacts and with other recording configurations produced by removing rows from 
the transformation matrix and recorded data.  Two different configurations were tested: 1) top 
half of the electrode only, and 2) evenly numbered contacts only.  The transformation matrix was 
recalculated using equations 1 and 2 with the appropriate rows of the lead-field matrix removed; 
the Tibial and Peroneal filters were then recalculated using the SBF algorithm.  The correlation 
coefficient was calculated between the output of these reduced tibial or peroneal filters on the 
mixed-branch signal and the full tibial or peroneal filter (ie, all 16 channels active) operating on 
the single branch signal to determine the relative quality of the techniques.  The results indicate 
that any decrease in the contact density produced a significant decrease in the cross-correlation 
coefficients. 

For the 7 nerves implanted, with 2 sources for each nerve, reducing the number of contacts to 8 
from the full 16 contacts (2/mm) decreased R2 value by 0.34±0.27, from 0.81±0.08 to 0.47±0.28 
when only the top half of the electrode is used and by 0.22±0.18 to 0.59±0.19 when only the 
evenly numbered contacts are used.  The best single-channel recordings (best channel chosen 

 
Figure S2: 130Hz Sinusoidal stimulation produces CAP-like neural responses with variable amplitude, delay, and 
complexity as the stimulation intensity is raised.  (A) Recording high-pass filtered at 100Hz, (B) the same signal 
high-pass filtered at 800Hz.  (C) A sample spike from the 170μApp stimulation level.  Note that the filter has 
effectively removed all traces of the stimulus artifact (119dB rejection).  

 

 

 

 



based on the highest R2 value), showed a significant reduction in accuracy compared to the full 
16-channel SBF algorithm, however this reduction is lost when the number of contacts is 
reduced, suggesting a certain contact density is required to achieve the full benefits of the 
algorithm. A full comparison of all of the different test configurations is available in Table 1, for 
all values n=14 and single-sided paired t-tests were used to determine statistical significance.  
Data was tested for normality with the Anderson-Darling test. 

 

 

Pseudo-Random Neural Activity 
The previous section investigated the accuracy of the algorithm acting directly on the high 
amplitude, short-burst neural activity such as generated during movements such as reflex 
activity.  However, most neural activity in peripheral nerves is desynchronized.  Desynchronized, 
pseudo-spontaneous activity with controlled timing and amplitude was elicited using 5 or 10kHz 
sinusoidal stimulation.  Since axonal refractory periods are longer than a single period of this 
stimulation, axons are unable to fire synchronously and the activity becomes pseudorandom[4].  
The recorded signals were digitally filtered between 800-3000Hz to remove any artifact or EMG 
contamination.  

TABLE I 

SUMMARY OF LARGE SIGNAL RECOVERY ACCURACY 

Test Case Filter 
Calculation 

Number 
of 

Contacts 

Configuration of 
Contacts R2 Reduction in 

Performance 
Statistical 

Significance  

Source based 
filters (SBF)  

Source-based 16 Full 0.81±0.08 0  

Single pixel filter Single row of 
Transformation 
Matrix 

16 Full 0.64±0.14 0.18±0.09 p<0.0002 

Even Electrode Source-based 8 Even Numbered Only 0.59±0.19 0.22±0.18 p<0.0003 

Half Electrode Source-based 8 Top Half Only 0.47±0.28 0.34±0.27 p<0.000075 

Best a posteriori 
Channels 

None 16 Full 0.58±0.14 0.24±0.11 p<0.000006 

Best a posteriori 
Channels 

None 8 Even Numbered Only 0.56±0.14 0.26±0.10 p<0.0000009 

Best a posteriori 
Channels 

None 8 Top Half Only 0.53±0.19 0.29±0.18 p<0.00002 

 



These signals have similar amplitude, power spectra, and statistical distribution to spontaneous 
nerve activity.  Since they can be precisely controlled in both time and amplitude by stimulation, 
they provide a repeatable and versatile method to generate realistic neural activity artificially.  
Figure S3 compares this pseudo-spontaneous evoked activity with activity recorded during 
voluntary inspiration from a cuff electrode chronically implanted on a canine hypoglossal 
nerve[1, 5].  Part A shows an example of ENG recorded during a voluntary inspiration from the 
hypoglossal nerve in chronic dog preparation, while part B shows signals with similar shape 
recorded during four separate 5kHz trials at four different amplitudes after artifact removal.  
Figure S3c compares the power spectra of these recordings (here filtered with a wider 100Hz-
4kHz band for comparison) with each other and the voluntary recording of part A.  The spectra 
have similar peaks, although the canine recording appears to have a higher proportion of high 
frequency power, potentially due to the mixture of fibers in the nerve, or the effect of 
encapsulation.  The range of amplitudes evoked is shown in part D, along with the variance in 
RMS value calculated using 1 second bins.  These values range from less than 2 μVrms to more 
than 12μVrms.  This is comparable to values of 2-5 μVrms reported during chronic inspiration and 
acute sensory recordings[1, 6], although larger values such as those achieved here may be 
expected due to the stronger motor fibers present in this nerve.  As above, when this stimulation 
is applied after the nerve has been ligated or cut, the recorded signal shows no increase in power 
over baseline noise level, confirming the neural origin of the signal. 



 

Classification 
 To determine the ability of the algorithm to recover lower SNR signals that have properties 
similar to motor activity within the nerve, pseudo-spontaneous activity was generated by 
stimulating one of the two branches individually with 5 or 10 kHz sinusoids (Figure S3).  30-
second 16-channel ENG data sets were recorded on the main sciatic trunk, and divided into 
100ms bins.   One recording was made for each stimulation intensity on each branch of 6 sciatic 
nerves.  The root-mean-square (RMS) power was calculated for each bin on each of the 16 
channels. The beamforming filters for the tibial and peroneal branches were then applied giving 
an estimate for the activity level in each branch.  The larger of the two estimates was used to 

 

 

Figure S3: Generating Pseudo-spontaneous activity. (A) ENG recorded chronically on the hypoglossal nerve of a 
canine[1] during spontaneous inspiration, shown here for comparison with the 5kHz evoked neural signals recorded 
during these experiments. (B) ENG signals during 5 KHz stimulation of the tibial branch, filtered 800-3000Hz at four 
different intensities.  Each intensity was recorded during a separate but sequential trial and a segment from each is 
shown side-by-side here for comparison.  The power of the signal increases as the stimulation intensity (denoted by or 
on each segment) increases. (C) Comparison of power spectral density (Welch’s method) for various levels of 5kHz 
stimulation with signal in A. (D) Box and whisker plot of power in recorded signal for each stimulation intensity 
applied. Points above each column represent outliers.  The stimulation artifact has been effectively rejected to more 
than 40dB below signal level in all cases.  



predict which branch had been stimulated.  The accuracy over six experiments is plotted against 
the stimulation level in Figure S4.  

Pseudo-spontaneous signals were able to generate muscle contraction and the threshold 
amplitude required to generate motor activity was measured (Mth). The amplitude was then 
varied between <50% of MTh, to >300% as in Figure S4. For very low stimulation levels (<50% 
of MTh) the classification accuracy is approximately at chance level, however as the stimulation 
increases, the resulting neural signal also increases saturating at approximately 150% of MTh, 
after which the mean is relatively constant while the standard deviation shrinks. Over 150% of 
the motor threshold, the classification accuracy is 98±4%.  Muscle fatigue was not observed to 
have a noticeable effect on the recorded signals or classification accuracy. 

    

 

Amplitude Dependence of the Recovered Signals 
In order to determine the ability of the algorithm to recover proportional control signals, the 
outputs of the Tibial and Peroneal filters were analyzed over various stimulation amplitudes. The 
results are plotted in Figure S5 for a typical experiment. 5kHz stimulation was applied for 30 
seconds at a variety of intensities to the tibial branch only.  The recorded signals were split into 
1s bins, and the RMS power on each channel, in each bin was calculated.   The Tibial and 
Peroneal filters were the applied to obtain the activity level of each source during each bin.   The 

 
Figure S4: Classification Accuracy for a simple 2-class system of Tibial or Peroneal activity during 5 or 10kHz 
stimulation.  Data were broken down into 100ms bins in order to take the RMS and apply the beamforming filters.  
The Tibial filter value with the Peroneal filter value were compared for each bin and the higher of the two estimated 
as the active branch.  Above 150% of muscle threshold, the algorithm identified the correct branch in more than 
98±4% of the 100ms windows. 
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results indicate that the estimated power in the stimulated source (blue) was significantly higher 
than the estimated power in the unstimulated source (red) at all the amplitudes of stimulation 
tested. The separation between the responses for each level of stimulation suggests that it is 
possible to distinguish multiple levels of activity, rather than simpler all-or-nothing binary 
classification.  In order to evaluate the information transfer in these data, a linear discriminant 
analysis classifier was trained with 10% of the data from each experiment and tested on the 
remaining 90%.  The classifier was used to predict which stimulation intensity (class) a given 
100ms bin’s power level belonged to, and calculate the resulting accuracy over the range of 
intensities tested.  This accuracy was used with Equation 6 to calculate the bit-rate or throughput.  
The results show that for six experiments the total bit transfer rate was 8±4 bps for each 2-source 
nerve. 

 

Convergence of the Source-Based Filters 
Convergence of the iterative SBF algorithm presented here was monotonic for all experimental 
data.  In all cases successive iterations provided steadily decreasing improvements to the signal 
to interference ratio, and in all cases at least some improvement was observed.  Poor 
convergence seemed to coincide with the fascicular sources being closer together, and so more 

 

 

Figure S5: Box plot of the outputs of the Tibial and Peroneal filters acting on binned RMS data during Tibial (blue) 
stimulation.  Note that the blue values show a higher mean, and a much clearer trend with increasing stimulation 
intensity.  In order to take into account resting activity levels, an offset was applied to each filter output to force their 
mean to be zero at zero stimulation current.  Long (1sec) bins were used to show the trend clearly. 



difficult to separate (as judged by the estimated localization and the raw spatial signal). The 
number of cycles required to reach threshold depended strongly on the rate of convergence used.   

 

Application to a Simulated Human Case 
In order to examine the quality of control signals that might be expected in a more complex case, 
a finite element model of the human femoral nerve with 10 active fascicles split into 5 groups 
based on muscle innervated was used.  A full description of this model is available in Wodlinger 
and Durand[3].  Independent signals were generated for each of the 5 groups using Poisson-
distributed action potentials with a time-varying lambda value.  These action potentials were 
distributed over axons in each of the fascicles of the group, over a range of axon diameters. The 
signals were then summed, and Gaussian noise added with the same variance as the signal (i.e. 
SNR=1).  Using the SBF algorithm, these signals were separated and the correlation coefficients 
between the recovered mixed-signals and the recovered single-group inputs calculated.  Figure 
S6 shows an example trial where 3 of the 5 signals are recovered well (R2>0.7), and one other 
(E) may still be suitable for binary control, if not proportional.  The mean R2 value in these tests 
was 0.7.  The source based filters for this test were calculated based a separate 100ms segment of 
single-group activity for each group at the same noise level, as might be provided in an amputee 
through attempted training movements. 
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